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1 “Restricting the model” Method

1.1 Herbrand’s Theorem

Herbrand’s theorem is the most basic result about witnessing existential quantifiers in logically valid first-
order formulas of a certain syntactic form ([Her30]).

The result applies to universal theories, theories all of whose axioms are universal sentences of the form
∀zB(z), where B is quantifier-free.

Theorem 1.1. Let L be a first-order language and let T be a universal L-theory. Suppose A(x, y) is a
quantifier-free formula and T ⊢ ∀x∃yA(x, y). Then there are k ⩾ 1 and L-terms ti(x) with 1 ⩽ i ⩽ k, such
that T proves ∨

1⩽i⩽k

A(x, ti(x)). (1.1)

Proof. There are two main steps in this proof method: "compactness theorem" and "restricting the model".
At first, assume that the theory T does not prove any formula in the form of (1.1). We extend T to a new

theory T ′ by adding as axioms all instances of ¬A, which means all the sentences of the form ¬A(x, t(x))
for every term t(x) in the language L. Every finite subset of the new theory T ′ has a model, since T is
consistent with finite instances of ¬A, thus by compactness theorem T ′ has also a model. We denote that
initial model by M .

At the next step, we consider the set S of all L-terms u(x) and define the equivalence relation

u ∼ v if and only if u(m) = v(m) for all m ∈M.

This relation defines ∼-equivalence classes [u] for u ∈ S. In this way, we make a new model N := S/ ∼,
which is interpreted as

N |= R([u1], ..., [un]) if and only if M |= R(u1(x), ..., un(x)),

where R is a predicate symbol and u1, ..., un ∈ S. By induction, one can show that for all quantifier-free
L-formulas C(z1, ..., zn), the same is true:

N |= C([u1], ..., [un]) if and only if M |= C(u1(x), ..., un(x)),

which immediately means that N is also a model of T ′, since it is a universal theory. However, T ′ as an
extension of T proves ∀x∃yA(x, y), while for the term u(x) = x and the element [u] ∈ N

N |= ¬∃yA([u], y),

because otherwise if N |= A([u], [t]), then M |= A(x, t(x)), which is not true by the axioms of T ′. Therefore,
N ̸|= ∀x∃yA(x, y), thus getting a contradiction to the initial hypothesis.

Remark. The proof presented here is due to [Kra19]. The initial theorem and proof are more general and
this version is just a corollary.
A simpler proof would choose at the second step a cut of M with elements generated by some e ∈ M and
all the elements of the form t(e) for t ∈ S. This new model Me is a substructure of M , thus it satisfies all
the axioms of T ′ by universality, but it is easy to see that it does not satisfy ∀x∃yA(x, y). This argument is
presented in detail in the next proof.
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1.2 Parikh’s Theorem

Parikh’s theorem is first presented in [Par71]. The proof here follows [Kra95] or [Kra19].

Theorem 1.2. Let A(x, y) be a ∆0-formula (bounded formula) and T be one of the theories Si
2, T i

2, I∆0.
Assume that

T ⊢ ∀x∃yA(x, y).

Then there is a term t(x) in the language of the theory T , such that

T ⊢ ∀x∃y ⩽ t(x)A(x, y).

Proof. The proof follows the same argument as above. At first, we assume that for any term t(x), T does
not prove the sentence

∀x∃y ⩽ t(x)A(x, y).

We extend the language of the theory by adding a new constant e and the theory by adding the axioms:

1. e > sn, for each numeral sn, for n ⩾ 1,

2. ¬∃y ⩽ t(e)A(e, y), for each term t(x).

We denote the new theory by T ′. From the hypothesis, we get that any finite subset of T ′ has a model, thus
T ′ has a model. Let M be this model. M is a non-standard model because of the axioms e > sn (and this
is the definition of a non-standard model).

Next, we restrict the model M by a cut. A cut in M is any I ⊆M such that

• I contains all the M -interpretations of constants from the language of the theory and is closed under
all functions,

• I is closed downwards, so that if a < b and b ∈ I, then a ∈ I, for all a, b ∈M .

We denote the cut we use here by Ie and is defined as

Ie := {a ∈M | there exists a term t(x) such that M |= a ⩽ t(e)}.

This cut is also referred as the Skolem closure of e in M ([KS06]).
By the axioms ¬∃y ⩽ t(e)A(e, y) and the definition of Ie, it is easy to see that

Ie |= ¬∃yA(e, y).

Therefore, if Ie is also a model of T ′, we have a contradiction, since T ′ proves ∀x∃yA(x, y), hence the initial
hypothesis was not correct. The axioms we added to T ′ are easily satisfied by Ie, since they are satisfied by
M . It suffices to show that Ie is a model of T .

Firstly, by induction on the number of quantifiers and logical connectives, we can prove that for all
bounded formulas B(z1, ..., zn) and any a1, ..., an ∈ Ie

Ie |= B(a1, ..., an) if and only if M |= B(a1, ..., an).

The only thing we need to observe for this is that due to the downward closure of cuts, the bounded quantifiers
are defined in the same way for M and Ie.

From the fact above, we can simulate the induction of the theory T in Ie and as a result Ie |= T and the
proof is complete.
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1.3 KPT Theorem

The KPT theorem is named after its authors in [KPT91] and it extends the result of Herbrand’s theorem.
The second proof in the original paper follows a similar model-theoretic argument as above. Below we denote
by □p

i+1 the class of functions computable by a polynomial-time machine with access to an oracle from the
class Σp

i (alternatively FPΣp
i ).

Theorem 1.3. Let i ⩾ 1 and ϕ(a, x, y) an ∃Πb
i -formula. If

T i
2 ⊢ ∃x∀yϕ(a, x, y),

then there are □p
i+1-functions f1(a), f2(a, b1), ..., fk(a, b1, ..., bk−1) with the free variables shown, such that

T i
2 ⊢ ϕ(a, f1(a), b1) ∨ ϕ(a, f2(a, b1), b2) ∨ · · · ∨ ϕ(a, fk(a, b1, ..., bk−1), bk).

The same holds for PVi+1 replacing T i
2, for i ⩾ 0.

Proof. For the proof we need a lemma first. For a more systematic demonstration of these facts, see also
[HP17] Chapter V, 4.20-4.26. Actually for point 1, it is proven there that M∗ is elementary to M with
respect to the closure of Σb

1 formulas.

Lemma 1.4. Suppose M is a model of T i
2, for i ⩾ 1, or of PV1 for i = 0. Let M∗ be a subset of M closed

under all standard □p
i+1-functions definable in M with parameters from M∗. Then

1. M∗ is a Σb
i -elementary substructure of M (every Σb

i formula with parameters from M∗ is true in M∗

if and only if it is true in M),

2. M∗ |= T i
2 for i ⩾ 1, or M∗ |= PV1 for i = 0.

Proof. For (1), if we have a Σb
i formula ϕ, we can transform it to a quantifier-free by Skolemization (see

Section 2). The new Skolem functions can be defined in T i
2 by the maximum value that satisfy the respective

existential quantifier, since T i
2 proves the Σb

i–MAX principle.
In detail, if we want the Skolemization of a formula ∃y ⩽ t(x)ψ(x, y), then the Skolem function f(x),

such that ∃y ⩽ t(x)ψ(x, y) ≡ ψ(x, f(x)) can be defined by the formula

A(x, y) := (y = 0 ∨ ψ(x, y)) ∧ ∀z ⩽ t(x), y < z → ¬ψ(x, z).

If this formula is written starting with a bounded existential quantifier, then it needs at most n+1 bounded
quantifiers, using the fact that the initial formula is at most Σb

i . For the function f(x) to be definable in T i
2,

we need:

1. For all x ∈M , A(x, f(x)) is true,

2. T i
2 ⊢ ∀x∃yA(x, y),

3. T i
2 ⊢ ∀x∀y∀z(A(x, y) ∧A(x, z)) → y = z.

The first one is obvious from the definition and the other two can be proved using the fact that

T i
2 ⊢ ψ(x, 0) → ∃y ⩽ t(x)∀z ⩽ t(x), ψ(x, y) ∧ (y < z → ¬ψ(x, z),

which is an instance of the Σb
i–MAX principle.

This means that the Skolem functions are all Σb
i+1-definable in T i

2, which by [Bus90] means that they
are in □p

i+1. However, M∗ is closed under □p
i+1-functions, which means that the Skolemization of ϕ has the

same truth value in M and M∗.
For (2), we want to show that the induction scheme Σb

i–IND holds in M∗, or equivalently that for any
Σb

i -formula ϕ(x) and any b ∈M∗ we have:

M∗ |= ¬ϕ(0) ∨ ϕ(b) ∨ (∃x < b, ϕ(x) ∧ ¬ϕ(x+ 1)).
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Assume that we have M∗ |= ϕ(0) ∧ ¬ϕ(b) in M∗. From (1), we get that M |= ϕ(0) ∧ ¬ϕ(b), as well. The
PVi+1-axiom is satisfied by M :

(ϕ(0) ∧ ¬ϕ(b) ∧ h(b, b) = (x, y)) → (x+ 1 = y ∧ ϕ(x) ∧ ¬ϕ(y)).

The function h(b, u) is defined in [KPT91] and it is in the class □p
i+1, as it is the projection on the first

component of h(b, b). It is easy to prove that (h(b, b))1 < b and also from the axiom above, if x = (h(b, b))1,
then

M |= ϕ(x) ∧ ¬ϕ(x+ 1).

However, x ∈M∗, since b ∈M∗ and M∗ is closed under □p
i+1-functions. This means that from (1), we get

M∗ |= ∃x < b, ϕ(x) ∧ ¬ϕ(x+ 1),

and the proof is complete.

Back to the original proof, assume for the sake of contradiction that for no k and f1, ..., fk ∈ □p
i+1,

T i
2 proves the required disjunction. Then, we take an enumeration f1, f2, ... of all □p

i+1-functions with the
properties:

1. The jth function fj depends on ⩽ j arguments.

2. Each □p
i+1-function occurs in the list infinitely many times.

We consider new constants c, d1, d2, ... and we define the new theory

T i
2 + ¬ϕ(c, f1(c), d1) + · · ·+ ¬ϕ(c, fj(c, d1, ..., dj−1), dj) + · · ·

which is consistent (it has a model) by the compactness theorem, since any finite subset of it is consistent
by the hypothesis.

We take a model M of the new theory and define a substructure M∗ ⊆M as

M∗ := {f1(c), f2(c, d1), ...},

where c, d1, d2, ... are the interpretations of the constants in M . All the projection functions are □p
i+1-

definable, which means that {c, d1, d2, ...} ⊆M∗, and each □p
i+1-function occurs infinitely many times on the

list, so M∗ is closed under the □p
i+1-functions. These two properties (which are similar to the two properties

of cuts) enable us to use Lemma 1.4.
Therefore, M∗ |= T i

2 and M∗ ≺Σb
i
M . However, we also have:

M∗ |= ∀x∃y¬ϕ(c, x, y),

by getting y = dj ∈ M∗ for every x = fj(c, d1, ..., dj−1). This contradicts the original hypothesis that
T i
2 ⊢ ∃x∀yϕ(c, x, y), hence the theorem is proved.

1.4 Buss’s Theorem

Buss’s theorem is proved with model theory in [HP17] (more details soon)

1.5 A model of Si
2

[Zam96], [Kra95] (more details soon)
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2 Herbrandization

Skolemization and Herbrandization are two techniques for reducing quantifier alternations by introducing
new functions.

Let ϕ(x) = ∃yψ(x, y) be a formula with x its free variable. The Skolem function for ϕ is a new function
represented by a function symbol fϕ and has the defining axiom:

Sk − def(fϕ) : ∀x∀y(ψ(x, y) → ψ(x, fϕ(x))).

The important fact is that this axiom implies:

∀x(∃yψ(x, y) ↔ ψ(x, fϕ(x))).

The process of Skolemization can be continued in two different ways: inside out and outside in. In the
second case, we eliminate only the existential quantifiers by starting by the outermost quantifier and defining
a Skolem function only if it is existential.

We care for the first case, which is applied in the proof of Lemma 1.4. If the initial formula is in
prenex form, we start from the first (innermost) quantifier and define new Skolem functions, as above if the
subformula is of the form ∃ψ, or to ∃¬ψ if the subformula is of the form ∀ψ ≡ ¬∃¬ψ.

The dual notion of Skolemization is Herbrandization. Let ϕ(x) = ∀yψ(x, y) be a formula with x its free
variable. The Herbrand function for ϕ is a new function represented by a function symbol hϕ and has the
defining axiom:

Her − def(hϕ) : ∀x∀y(¬ψ(x, y) → ¬ψ(x, hϕ(x))).

The important fact is that this axiom implies:

∀x(∀yψ(x, y) ↔ ψ(x, hϕ(x))).

However, for our purpose, we do not need the Herbrand axiom. By introducing a new function symbol hϕ,
we have the desired equivalence ∀yψ(x, y) ↔ ψ(x, hϕ(x)). If ∀yψ(x, y) is true (in a model), then ψ(x, hϕ(x))
must also be true, and if ∀yψ(x, y) is falsified, then there must be a counterexample and the value of hϕ(x)
can be one of these counterexamples.

2.1 KPT Theorem

This is another proof of Theorem 1.3 as presented in [Kra19]. The first proof in the original paper ([KPT91])
follows the same argument. We slightly change the statement using universal theories. Then, Theorem 1.3
is implied, since PVi+1 is a universal theory conservative to T i

2 and its terms are exactly the □p
i+1-functions.

Also, the formula ϕ(a, x, y) ∈ ∃Πb
i−1 (it is not clear how to do Πb

i ) can be transformed to a quantifier-free
formula by Parikh’s theorem (?) and Skolemization, since Skolem functions are □p

i+1 (see the proof of Lemma
1.4).

Theorem 2.1. Let T be a universal theory in the language L and ϕ(a, x, y) a quantifier-free formula. If

T ⊢ ∀x∃y∀zϕ(x, y, z),

then there are L-terms t1(x), t2(x, z1), ..., tk(x, z1, ..., zk−1), such that

T ⊢ ϕ(x, t1(x), z1) ∨ ϕ(x, t2(x, z1), z2) ∨ · · · ∨ ϕ(x, tk(x, z1, ..., zk−1), zk).

Proof. We want to apply Herbrandization to the formula ∀x∃y∀zϕ(x, y, z). We define the Herbrand function
h(x, y) and we consider T as a theory in the new language L ∪ {h}. As we have seen, ∀x∃y∀zϕ(x, y, z) is
equivalent with ∀x∃yϕ(x, y, h(x, y)). This means that

T ⊢ ∀x∃yϕ(x, y, h(x, y)),
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and now we can apply Herbrand’s theorem. As a result, we get that T proves∨
1⩽i⩽k

ϕ(x, t′i(x), h(x, t
′
i(x))).

We now have to transform this disjunction. We start by finding a subterm s in the disjunction that starts
with h and has the maximum size among all such terms. It must be one of the terms sitting at position
z (otherwise, if it is a subterm of some t′i, the term h(x, t′i(x)) has greater size). Assume without loss of
generality that it is h(x, t′k(x)). We can replace this term by a new variable zk without changing the validity
of the disjunction, as we have not fixed an interpretation of h. From maximality of the size, this term does
not occur in any term t′i with i ⩽ k. We can continue this process by replacing the next maximum size
subterm that starts with h by zk−1. This term either occurs in t′k, so we have just simplified it, or in some
of the terms in the position of z, which means that we continue as above. By repeating this process as long
as there is no occurrence of the symbol h in the disjunction, we have transformed it to the desired form.

Remark. KPT theorem can also be derived as a corollary of generalized Herbrand’s Theorem as mentioned
in [Bus94].

2.2 Si
2-KP Theorem

The next theorem is a KPT analogue for the theories Si
2. It was proven in [Kra92] and [Pud92] at the same

time, so we name it Si
2-KP Theorem. The proof here follows the technique used above and it is the proof

from [Kra92] (also in [Kra95]).

Theorem 2.2. Let ϕ(a, x, y) be a Σb
i -formula and assume that

Si
2 ⊢ ∃x∀y ⩽ a ϕ(a, x, y).

Then there is a function g(a) such that

N |= ∀n∀y ⩽ n ϕ(n, g(n), y),

where g is computable by a □p
i -algorithm (student) which may ask for any (polynomial) number of counterex-

amples to ∀y ⩽ aϕ(a, b, y). (This class can be denoted by FPΣp
i−1 [wit, poly].)

Proof. We apply Herbrandization to the initial formula for the y-quantifier. We add the new symbol f for
the Herbrand function and we get the formula

∃x f(a, x) ⩽ a→ ϕ(a, x, y).

From the hypothesis, we get that

Si
2(f) ⊢ ∃x f(a, x) ⩽ a→ ϕ(a, x, f(a, x)),

where Si
2(f) is the theory Si

2 but in the new language L ∪ {f} and with axiom f(a, x) ⩽ a.
Now we apply Buss’s theorem to the relativized Si

2, thus getting a function F from the class □p
i (f), which

means computable by a polynomial time Turing machine querying a Σp
i−1 oracle and also values of f . As a

result, this function F satisfies

f(a, F (a, f)) ⩽ a→ ϕ(a, F (a, f), f(a, F (a, f))).

As we have seen, the Herbrand function f is some counterexample function, but we need to specify it.
So, we substitute it in the computation of F (a, f) by a particular function f∗ defined by

f∗(a, b) :=

{
min c ⩽ a s.t. ¬ϕ(a, b, c) if it exists
a+ 1 if ∀y ⩽ a ϕ(a, b, y).

With this definition the formula
f∗(a, b) ⩽ a→ ϕ(a, b, f∗(a, b))
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implies
∀y ⩽ a ϕ(a, b, y)

which by b = F (a, f∗) means that
∀y ⩽ a ϕ(a, F (a, f∗), y),

which is the desired result.
If the quantifier ∀y was not argument, we can have the same result, but the algorithm computing F

would have a running time polynomial in |a|+
∑

i |f∗(a, ui)|, instead of polynomial in just |a|.

Remark. What is the difference between these two proofs? Both come from Herbrandization of similar
results; Herbrand’s theorem and Buss’s theorem. I think the only difference is that Herbrand’s theorem
uses terms instead of functions, which enables us to transform counterexamples to variables and insert them
in the term for the variable in the second position (the one with the existential quantifier). So, the difference
is in the languages:
We do not know how many times the counterexample oracle function f is used in the latter case, but in the
formal expression of a term t in the former case, we know that the counterexample Herbrand function h can
appear only a constant number of times (because the term has a fixed formal expression).

2.3 Wilkie’s Witnessing Theorem

[Kra95] 7.3.7

3 Sequent Calculus

Witnessing theorems that are proved by harnessing the sequent calculus proofs and cut elimination:

• Buss’s main theorem (Σb
i -consequences of Si

2) [Bus85]

• Buss’s proofs of Herbrand’s [Bus94] and Parikh’s [Bus85] theorems

• Pudlak’s proof of Si
2-KP Theorem [Pud92]

• Krajicek’s witnessing of Σb
i+1-consequences of Si

2 [Kra93]

The last two proofs are improvements on the main theorem of Buss. The last one is the only one which does
not have a model-theoretic proof yet.

Remark. The core of Buss’s theorem uses only bounded formulas. It transforms a formula ∀∃ϕ, where ϕ is
bounded, by removing ∀ thus making the formula open and changing ∃ to bounded by Parikh’s theorem.
This may indicate that this method does not work well with more quantifiers.
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