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Chapter 1

Introduction

1.0.1 Historical background

The concept of a sheaf has its roots in the study of analytic continuation of functions, which
began in the 19th century and was subsequently formalized by Hermann Weyl in his notable work
on the "idea" of the Riemann surface. Later studying domains of holomorphy and the Cousin
problems, Henri Cartan and Kiyoshi Oka explored the notion of ideals on a domain, which, as
it turned out, are effectively sheaves. In 1944, Cartan referred to them as "coherent systems of
punctual ideals," while Oka, in 1949, addressed "ideals with an indeterminate domain."

Post-World War II, Jean Leray contributed significantly by providing the first comprehensive
and explicit definition of a sheaf on a space, described with closed sets of that space. Cartan,
building upon this idea, reformulated the definition of sheaves in terms of open sets during his
seminars in 1948-49 and 1950-51. In these seminars, Lazard also introduced the equivalent defi-
nition of a sheaf on a space as an étale bundle into this space. This profound equivalence between
these two notion of sheaves became a central motivating force in a new area of mathematics,
topos theory.

At this time, sheaves could be perceived as continuous mappings of the open sets of a topo-
logical space X to another topological space, which is constructed by the images of the mappings,
such that they agree on the intersections. The final space can be projected on the space X in a
continuous and locally homeomorphic way.

Subsequently, J. P. Serre and other mathematicians found application of sheaves that ex-
tended beyond topology, in algebraic geometry. Although the étale bundle approach to the sheaf
construction gives continuous maps by solely defined on subsets of X, they could be also defined
on objects U , which need not be subsets contained within X, but rather mappings from some
other space U into X. This expansion of scope introduced concepts from category theory.

This shift prompted Grothendieck to redefine sheaves within a broader context. He replaced
the notion of a partially ordered collection of open subsets of a space with objects from a category
C. In this category, families of maps with codomain an object X replaced the notion of "covers"
of an open subject. Under this structure on a category, known as "Grothendieck topology", a
sheaf transformed into a functor that could be collated over each cover.

After that, Grothendieck’s mathematical landscape was transformed. For him, topology be-
came an exploration of (the cohomology of) sheaves, and the sheaves situated within a particular
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CHAPTER 1. INTRODUCTION 2

Grothendieck topology formed a topos, later known as a Grothendieck topos. In this framework,
the formulation of various cohomologies theories set the stage for an extensive effort to tackle
the Weyl conjectures regarding solutions to polynomial equations. In the early 1960s, these
highly versatile ideas underwent rapid development, driven by the collaborative efforts of A.
Grothendieck and his colleagues, including J. L. Verdier, M. Artin, M. Giraud, M. Hakim, L. Il-
lusie, and others. These groundbreaking concepts were documented in an expanded three-volume
publication titled "SGA IV", totaling 1623 pages. Their far-reaching impact resonated through-
out the domain of algebraic geometry and ultimately played a pivotal role in the resolution of
the Weyl conjectures by P. Deligne in 1974.

1.0.2 Thesis structure

In this master thesis, we make an exploration of sheaf theory, focusing on its foundational
principles in topology and category theory and showcasing some applications in the form of
equivalences of sheaves with other structures. The aim of this work is to present this profound
area of mathematics with precision and clarity, providing a comprehensive understanding of this
intricate subject.

We begin in the first chapter with an introduction of sheaf of sets on a topological space.
After presenting the basic concepts regarding sheaves, we establish a fundamental equivalence
between presheaves and bundles on spaces, which is restricted to an equivalence between sheaves
and étale bundles. Next, we see how the sheaves of sets can be equipped with algebraic structure,
bringing about sheaves of abelian groups, rings, modules, etc. We conclude with two sections,
one about the important notion of inverse image and one showing that the category of sheaves is
a topos. This chapter lays the groundwork for our understanding of sheaf theory’s fundamental
concepts, providing a solid foundation for the subsequent chapters.

In the second chapter, we expand the notion of sheaves to sheaves on categories with a specific
structure, called sites. This extension broadens the scope of sheaf theory, enabling its application
in various mathematical domains. We introduce Grothendieck topologies and how they can be
used for the definition of sheaves on a site, concluding with the two-step process of sheafification,
a significant contruction for transforming presheaves into sheaves.

In the final chapter, building upon the basic theory established in the previous chapters, we
demonstrate an application in the domain of group representations; we show the equivalence
between set representations of a group and sheaves on its orbit category. For this purpose, we
utilise a generalisation of continuous functions, continuous and cocontinuous functors of sites,
as well as geometric morphisms of topoi, the atomic topology and the transporter category.
This chapter showcases the power of generalising all these concepts from topology, geometry and
algebra, and processing them in the light of topos theory.



Chapter 2

Sheaves on Topological Spaces

2.1 Sheaves of Sets

Initially, we introduce some notation. We typically denote topological spaces with the letters
X,Y and an arbitrary category with C. We put some specific categories in bold, for example Set

is the category of sets. With O(X) we denote the category of open sets of a topological space X
and exponential of categories is the category of functors from the exponent to the base. So, the
category SetO(X)op is the category of the functors O(X)op → Set, which are called presheaves.
Finally, if we have a presheaf P : O(X)op → Set, open sets W ⊂ U and an element f of the set
P (U), then we denote with f |W the restriction of f which belongs to the set P (W ) or in other
words, it is the image of f under the morphism P (i) where i :W ↪→ U is the inclusion morphism
in the category O(X).

Definition 2.1.1 (Sheaf on topological space). Let X be a topological space. A sheaf of sets
F on X is a presheaf on X, such that each open covering {Ui}i∈I of an open set U (U =

⋃
i∈I Ui)

yields an equaliser diagram:

F (U)
∏
i

F (Ui)
∏
i,j

F (Ui ∩ Uj),e
p1

p2
(2.1)

where for f ∈ F (U), e(f) = {f |Ui : i ∈ I} and for a family {fi ∈ C(Ui)}i∈I ,

p1({fi}) = {fi|Ui∩Uj}, p2({fi}) = {fj |Ui∩Uj}.

We recall that equaliser is the object E with the morphism e, in our case in the category of
sets, such that p1 ◦ e = p2 ◦ e, and is universal, in the sense that if we have another object E′

with morphism e′, such that p1 ◦ e′ = p2 ◦ e′, then there is a morphism d : E′ → E, such that
e′ = e ◦ d.

We can define the morphisms F → G of sheaves as the natural transformations of functors
and as a result we can define the category of sheaves of sets onX, denoted by Sh(X). Apparently,
Sh(X) is a full subcategory of the category of presheaves.

Next, we present the first fact about sheaves.

Proposition 2.1.2. Every sheaf must send the empty set onto a one-point set.
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CHAPTER 2. SHEAVES ON TOPOLOGICAL SPACES 4

Proof. For any space X and any sheaf F , the empty set has an empty cover. However, the
product over an empty index set is a one-point set, so the equaliser in the definition of sheaf
becomes:

F (∅) {∗} {∗},

which gives us F (∅) = {∗}, as wanted.

Definition 2.1.3 (Subsheaf). For a sheaf F on a topological space X, a subsheaf of F is a
subfunctor of F , which is itself a sheaf. We can define the category of subsheaves of F , having
a morphism from subsheaf F1 to subsheaf F2, if F1 is a subsheaf of F2. We denote this category
SubSh(X)(F ).

Proposition 2.1.4. For a topological space X and a sheaf F on X, the following are equivalent:

1. a subfunctor S of F is a subsheaf,

2. for every open set U ⊂ X, a covering U =
⋃
i∈I Ui and an element f ∈ F (U), we have

f ∈ S(U) if and only if f |Ui ∈ S(Ui) for all i ∈ I.

Proof. (2) ⇒ (1): From this condition, we have that S is a sheaf. It is also a subfunctor of F ,
thus a subsheaf.

(1)⇒ (2): We need to prove that for every open set U ⊂ X, a covering U =
⋃
i∈I Ui and an

element f ∈ F (U), f ∈ S(U) implies that f |Ui ∈ S(Ui) for all i ∈ I.
Since S is a subfunctor of F , there is a monic map m : S → F . We have an element f ∈ F (U)

with f |Ui ∈ S(Ui) for every Ui. Equivalently we can say that there are g|Ui ∈ S(Ui), such that
m(g|Ui) = f |Ui . We claim that S(U) is the fiber product in the pullaback square below and then
we would have that there is an element g with m(g) = f or equivalently f ∈ S(U), as desired.

S(U)
∏

S(Ui)

F (U)
∏

F (Ui)

e′

m m

e

To prove this claim we start with the two equaliser diagrams for the sheaves S and F and
we construct the diagram:

S(U)
∏

S(Ui)
∏

S(Ui ∩ Uj)

F (U)
∏

F (Ui)
∏

F (Ui ∩ Uj)

e′

m

p′1

m

p′2

m

e
p1

p2

where the vertical maps are the induced monic maps fromm. Sincem is a natural transformation,
the diagram is commutative.

Assuming we have an arbitrary set A with d1 : A →
∏
S(Ui) and d2 : A → F (U), such that

e ◦ d2 = m ◦ d1. Then, from the commutativity and the equalisers, we have

m ◦ p′1 ◦ d1 = p1 ◦m ◦ d1 = p1 ◦ e ◦ d2 = p2 ◦ e ◦ d2 = p2 ◦m ◦ d1 = m ◦ p′2 ◦ d1.
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Since m is monic, we get p′1 ◦ d1 = p′2 ◦ d1, so from the equaliser, there is a unique function
d : A → S(U) with d1 = e′ ◦ d. Also, e ◦ m ◦ d = m ◦ e′ ◦ d = m ◦ d1 = e ◦ d2 and since e is
equaliser, so monic, d2 = m ◦ d. Therefore, S(U) is the fibered product, as desired.

Definition 2.1.5 (1). For a topological space X, we define the constant sheaf 1 to be the
functor that maps each open U ⊂ X to the one point set, {∗}, which is the terminal object of
the category Set.

It is clear that 1 is a sheaf and it is also the terminal element in Sh(X).

Proposition 2.1.6. Consider a topological space X. Then we have the equivalence of categories:

O(X) ∼= SubSh(X)(1).

Proof. For an arbitrary open set W ⊂ X, we define the presheaf SW , such that for open U ⊂ X,
SW (U) = {∗} if U ⊂W and SW (U) = ∅, otherwise (in fact this is the Yoneda embedding y(W )

mentioned below). It is easy to see that this is a sheaf.
Conversely, consider S to be a subsheaf of 1. Then, each S(U) is either {∗} or ∅, but for

V ⊂ U , if S(U) = {∗}, then S(V ) = {∗}, as well. Also, by the equaliser condition, if we have an
open cover of U ,

⋃
i Ui = U and S(Ui) = {∗} for all i, then S(U) = {∗}. Therefore, we can get

the set
W =

⋃
{U ∈ O(X) | S(U) = {∗}}.

It is easy to see that S(U) = {∗} if and only if U ⊂W . But this is exactly the definition of SW ,
so S = SW .

We conclude that the desired bijection O(X) ∼= SubSh(X)(1) is W 7→ SW . If we see them
as partially ordered sets (or categories with morphisms being the inclusions), then the order is
clearly preserved, so it is an isomorphism (or equivalence of categories).

This result is remarkable, because it shows that one can recover the partially ordered set of
open subsets of a topological space X from the category Sh(X); it is the set of the subobjects of
the terminal object 1. Hence, we can say that the category of sheaves of sets on X determines
the topology of X.

2.2 Sieves and Sheaves

On a topological space X and given an open set U , we can define a presheaf of the form
Hom(−, U), which is defined:

Hom(−, U)(V ) = Hom(V,U) =

{∗} ifV ⊂ U

∅ otherwise.

This is trivially a sheaf and it is exactly the representative presheaf or the Yoneda
embedding, y(U), on the category O(X)op.

We now define a sieve S on O(U) as the subset of open sets in O(U) with the property that
if W ⊂ V ∈ S, then W ∈ S (in the next chapter, we give the general definition). Each family
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of open sets {Vi}i∈I can generate a sieve, which is the set of all open V ∈ O(U) such that ∃i
with V ⊂ Vi. If the family has only one element, then we call that sieve, a principal sieve.
Furthermore, if the union of all sets in a sieve is the original set U , then we call that a covering
sieve.

We can make a new definition of sheaves, replacing open coverings with covering sieves,
which has the advantage that we describe sheaves only in terms of objects in the category
PSh(X) = SetO(X)op . We will see how this alternative definition is useful in the next chapter
(Definition 3.1.1).

For the next proposition, we use the fact that a sieve is equivalent with a subfunctor of the
Yoneda embedding. We prove this result for the generalised case in Proposition 3.1.2.

Proposition 2.2.1. Let X be a topological space and P a presheaf on X. Then P is a sheaf
if and only if, for every open set U and every covering sieve S on U , we have an isomorphism
Hom(y(U), P ) ∼= Hom(S, P ), which is induced by the inclusion of functors i : S → y(U).

Proof. At first, we take the following equaliser diagram for any covering U =
⋃
i∈I Ui, considering

that P is just a presheaf.

E
∏
i

P (Ui)
∏
i,j

P (Ui ∩ Uj),d
p1

p2
(2.2)

Since we have sets, it is easy to see that E consists of the families of elements {xi ∈ P (Ui)}i∈I
such that xi|Ui∩Uj = xj |Ui∩Uj for all pairs (i, j) (because these two elements must be equivalent).
We can change the sets Ui with the sieve S, which is generated by {Ui}i∈I . For any V ∈ S, we
define xV = xi|V if V ⊂ Ui. This choice is independent of i, since xi are the elements where
all sets Ui agree on the intersections. Therefore, E is described equivalently by the families of
elements {x|V ∈ P (V )}V ∈S , where for V ′ ⊂ V , xV |V ′ = x|V ′ .

We can see the sieve S as a presheaf on X, where S(V ) = {∗} if V ∈ S and S(V ) = ∅,
otherwise. Then, each element xV ∈ P (V ) is a natural transformation xV : S(V ) → P (V ) with
∗ 7→ xV if V ∈ S. If V ′ ⊂ V , then we have the diagram

S(V ) P (V )

S(V ′) P (V ′),

xV

xV ′

which commutes, since xV |V ′ = x|V ′ . So, a family of elements {xV }V ∈S is actually a natural
transformation S → P . Hence, the equaliser E is the set of all natural transformations θ : S → P

or, in other words, the set Hom(S, P ).
Next, the map i : S → y(U) induces the map i∗ : Hom(y(U), P )→ Hom(S, P ) and we consider

the isomorphism Hom(y(U), P ) ∼= P (U) given by the Yoneda Lemma. We also get the map
e : P (U)→

∏
P (Ui) with x 7→ {x|Ui | i ∈ I}. Therefore, we have the diagram:

Hom(S, P )
∏

P (Ui)
∏
i,j

P (Ui ∩ Uj)

Hom(y(U), P ) P (U)

d
p1

p2

i∗

∼=

e
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This diagram commutes. Indeed, consider an element x ∈ PU , which is mapped to {x|Ui | i ∈
I} through e. In the other direction, x can be considered as a natural transformation y(U)→ P ,
where x|V : ∗ 7→ xV ∈ P (V ) for any V ⊂ U , which is also a natural transformation S → P ,
since if V ∈ S then V ⊂ U , so the map xV is always defined. This natural transformation
generates the maps xUi : S(Ui) → P (Ui) for any i ∈ I, so going through d, we get again the
family {x|Ui | i ∈ I}.

In this diagram, if i∗ is an isomorphism, then P (U) with the map e is an equaliser, thus P
is a sheaf. Conversely, if P is a sheaf, then for any covering sieve S, the map i∗ must be an
isomorphism, because the equaliser is universal.

2.3 Equivalence with Bundles

2.3.1 Bundles

Definition 2.3.1 (Bundle). For a topological space X, a continuous map p : Y → X is called
a bundle over X. The bundles over X form a category Bund(X) with morphisms f : p → p′

being continuous maps f : Y → Y ′ with p′ ◦ f = p.

Y Y ′

X

p

f

p′

Definition 2.3.2 (Cross-sections). Let U be an open set of a topological space X and p : Y → X

a bundle over X. A cross-section of the bundle p over U is a continuous map s : U → Y such
that the following diagram commutes:

Y

U X

ps

Let Γp(U) be the sets of all cross-sections of the bundle p over U :

Γp(U) = {s | s : U → Y, p ◦ s = i : U ↪→ X}.

Proposition 2.3.3 (Γ Functor). Γp is a sheaf and Γ: Bund(X) → Sh(X) is a functor from
bundles to sheaves.

Proof. Let V ⊆ U be two open sets of X. Then, we can define a morphism Γp(U) → Γp(V )

as the restriction operation. So, Γp is a presheaf on X (O(X)op → Set). Also if we have an
open covering {Ui}i∈I of U and a family of cross-sections {si : Ui → Y }i∈I that match on all
the overlaps Ui ∩ Uj , then "glueing" them together we get a cross-section s (s(x) = si(x) if
x ∈ Ui, thus p ◦ s(x) = p ◦ si(x) = x). Hence, we get that Γp is a sheaf. We call Γp the sheaf of
cross-sections on the bundle p.

We can thus define a mapping Γ: p 7→ Γp from the category of bundles to the category
of sheaves. If we have a map of bundles f : p → p′, then Γ(f) : Γp → Γp′ is the induced
map defined as Γ(f)|U : Γp(U) → Γp′(U) with s 7→ f ◦ s. We see that since p′ ◦ f = p, then
p′ ◦ Γ(f)|U (s) = p′ ◦ f ◦ s = p ◦ s = i, so Γ(f)|U (s) ∈ Γp′(U).
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Definition 2.3.4 (Germs and Stalk). Let P be a presheaf on a space X, a point x ∈ X, two
open neighbourhoods U and V of x and two elements s ∈ P (U), t ∈ P (V ). Then, s and t have
the same germ at x, if there is an open neighbourhood W of x with W ∈ U ∩ V , such that
s|W = t|W ∈ P (W ). This defines an equivalence relation and we call the equivalence class of s
under this relation, the germ of s at x denoted by germxs. The set of all germs at x is called
the stalk of P at x:

Px = {germxs | s ∈ P (U), x ∈ UopeninX}.

Remark 2.3.5. We can think of the stalk of P at x as a colimit. Consider P (x) to be the
restriction of P to the sets containing x, then we have the functions germx : P (U)→ Px, which
form a cone on P (x), because for s ∈ P (U) and W ⊂ U , germxs = germxs|W :

P (U) P (W )

Px

germx germx

This diagram is commutative, thus getting the aforementioned cone. If we have another cone
{τU : P (U)→ L}x∈U , then from the definition of germ, we can define a unique function t : Px → L

with t ◦ germx = τ . Therefore Px is the colimit of the functor P (x).

Definition 2.3.6 (Λ Functor). Let P be a presheaf on a space X and consider for every point
x ∈ X, its stalk Px. Then the disjoint union of these stalks form a set

Λ(P ) =
∐
x∈X

Px = {germxs | x ∈ X,U ∈ O(X), s ∈ P (U)}.

We define the function p : Λ(P ) → X such that germxs 7→ x. Also, for any s ∈ P (U), we
define the function ṡ : U → Λ(P ) such that ṡ(x) = germxs for x ∈ U . Then ṡ is a section of p.

Remark 2.3.7. We can topologise the set Λ(P ). We define the base of open sets as all the
image sets ṡ(U) ⊂ Λ(P ). For any element germxs, there is some U ∈ O(X), such that x ∈ U ,
thus germxs ∈ ṡ(U). Furthermore, if g ∈ ṡ(U)∩ ṫ(V ), then there is a point x ∈ U ∩V , s ∈ P (U),
t ∈ P (V ), such that g = germxs = germxt. Hence, there is some open set W ⊂ U ∩ V with
x ∈W and s|W = t|W = r ∈ P (W ), so g = germxr and g ∈ ṙ(W ) ⊂ ṡ(U) ∩ ṫ(W ).

With this topology on Λ(P ), the function p is a continuous map, since for an open U ⊂ X,

p−1(U) =
⋃
V⊂U,

V ∈O(X)

⋃
s∈P (V )

ṡ(V ).

So, p : Λ(P ) → X is a bundle. Also, each ṡ is continuous, because considering a base open set
ṫ(V ) ⊂ ṡ(U), we have V ⊂ U and ∀x ∈ V , germxt = germxs, thus ṡ−1(ṫ(V )) = V . ṡ is trivially
an open map and a bijection, as well, therefore it is a homeomorphism U → ṡ(U). Considering
this, each point germxs has the open neighbourhood ṡ(U), which is mapped homeomorphically
to U . This proves that p is a local homeomorphism. Finally, ṡ is a cross-section of the bundle
p : Λ(P )→ X.

Proposition 2.3.8. Λ: PSh(X)→ Bund(X) is a functor.
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It is easy to observe that Λ is indeed a functor.
Next, for a given presheaf P , we consider the sheaf ΓΛP of the cross-sections of the bundle

p : Λ(P )→ X and for each open set U of X the functions:

ηU : P (U)→ ΓΛP (U), s 7→ ηU (s) = ṡ.

Then, for V ⊂ U , we get the following commutative diagram

P (U) ΓΛP (U)

P (V ) ΓΛP (V )

ηU

ηV

s ṡ : U → ΛP

s|V ṡ|V : V → ΛP

ηU

ηV

and therefore η : P → ΓΛP is a natural transformation of presheaves.
The next result shows that every sheaf is a sheaf of cross-sections.

Theorem 2.3.9. If the presheaf P is a sheaf, then the natural transformation η with ηU (s) = ṡ

is a natural isomorphism of functors: P ∼= ΓΛP .

Proof. We will show that ηU is a bijection.
For the injection part, we consider s, t ∈ P (U), such that ṡ = ṫ. That means that ∀x ∈ U ,

germxs = germxt, thus there is an open Vx ⊂ U with s|Vx = t|Vx . However, {Vx}x∈U is an open
cover of U , so we consider the morphism:

PU
∏
x∈U

P (Vx),

which is an equaliser, thus it is a monomorphism. Since, s and t have the same images in∏
x∈U

P (Vx), we get s = t.

For the surjection part, we consider a cross-section t : U → Λ(P ).

Λ(P )

U X

pt

This means that for each point x ∈ U , there is an open neighbourhood of x, Ux, in which we
have an element sx ∈ P (Ux), such that t(x) = germxsx. Since t is continuous and ṡx(Ux) is an
open set in Λp, there is an open neigbourhood of x, Vx ⊂ Ux, which is mapped by t into ṡx(Ux),
which means t(Vx) ⊂ ṡx(Ux). Hence, we have that t = ṡx on Vx.

This way, we have got a covering of the open set U with the open sets Vx and an element
sx|Vx in each P (Vx). Also, for each pair x, y ∈ U , sx|Vx∩Vy = sy|Vx∩Vy , because ṡx and ṡy agree
with t on Vx ∩ Vy and η is injective. Hence, in the diagram below, with p1({rx}x∈U ) = rx|Vx∩Vy
and p2({rx}x∈U ) = ry|Vx∩Vy , we get that p1({sx}x∈U ) = p2({sx}x∈U ).∏

x∈U
P (Vx)

∏
x,y∈U

P (Vx ∩ Vy).
p1

p2
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Therefore, since P is a sheaf, there is the equaliser P (U)→
∏
x∈U

P (Vx), so there is an element

s ∈ P (U), such that s|Vx = sx. So, we get that ∀x ∈ U , t(x) = germxsx = germxs = ṡ(x), which
means that t = ṡ and t is at the image of ηU . As a result, ηU is a bijection, thus η is a natural
isomorphism.

Theorem 2.3.10. For a presheaf P , the sheaf ΓΛP , along with the transformation η : P → ΓΛP ,
is the universal object from P to sheaves. In other words, for any morphism in the category of
presheaves, θ : P → C, with C a sheaf, there is a unique σ : ΓΛP → C, which makes the diagram
below commute:

P ΓΛP

C.

η

θ
∃!σ

Proof. We have seen that η is a natural transformation, so the diagram below commutes:

P ΓΛP

C ΓΛC

θ

η

ΓΛθ

η

Also, as we have proved in Theorem 2.3.9, η : C → ΓΛC is an isomorphism, thus it has an
inverse η−1. Hence, if we define σ = η−1 ◦ ΓΛθ, then σ ◦ η = θ, as desired. It suffices to prove
that this σ is unique.

Consider another map τ : ΓΛP → C with τ ◦ η = θ. We take an open set U of X and a
cross-section h ∈ ΓΛP (U). Then, for some x ∈ U , h(x) ∈ ΛP (U) and p ◦ h(x) = x, so there is a
neighbourhood of x, Vx and an element sx ∈ P (Vx), such that h(x) = germx(sx) = ṡx(x). From
the continuity of h and ṡx, we can choose such a small Vx that h|Vx = ṡx = ηVx(sx) .

As a result, we get σ(h)|Vx = σ(h|Vx) = σ ◦ η(sx) = θ(sx) = τ ◦ η(sx) = τ(h|Vx) = τ(h)|Vx .
The sets Vx are a cover of the set U , so since C is a sheaf and σ(h), τ(h) ∈ C(U), we get that
σ(h) = τ(h). Since this is for an arbitrary h, we get that σ = τ , so σ is unique.

For a given presheaf P , we can consider an "approximation" of P by a sheaf, which is called
the sheafification of P and is achieved by applying the natural transformation η.

Corollary 2.3.11 (Sheafification). For a topological space X, the functor ΓΛ: PSh(X) →
Sh(X) is called the sheafification functor and it is the left adjoint of the inclusion functor
Sh(X) ↪→ PSh(X).

Proof. Theorem 2.3.10 proves that the natural transformation η : P → ΓΛP is the unit of this
adjunction, thus the two functors are adjoint by universal morphisms. As a result, we say that
the category of sheaves on X is reflective in the category of presheaves on X.

The procedure of sheafification has proven to be essential for sheaf theory. In the next
chapter, in Theorem 3.3.1, we give a generalised way to do it.
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2.3.2 Étale Spaces

Definition 2.3.12 (Étale bundle). For topological spaces E and X, a bundle over X, p : E → X

is called étale, when p is a local homeomorphism in the sense that for each e ∈ E, there is an open
set V ⊂ E with e ∈ V , such that p(V ) is open in X and p|V : V → p(V ) is a homeomorphism.

Proposition 2.3.13. For topological spaces, E and X, if the bundle p : E → X is étale, then p

and any cross-sections of p are open maps. Moreover, there is at least one cross-section se : U →
E through every point e ∈ E and the images se(U) of all these sections form a base for the
topology of E. If s and t are two cross-sections, the set W = {x | s(x) = t(x)} of points where s
and t are both defined and have the same value, is open in X.

The proposition is a consequence of Remark 2.3.7.

Proposition 2.3.14. For a given bundle on a topological space X, p : Y → X, we can construct
an étale bundle of the form ΛΓY → X.

Remark 2.3.15. Each point of ΛΓY is of the form germxs, where x is a point of U ⊂ X and
s : U → Y is a cross-section of the bundle. Then, we can define the function

ϵY : ΛΓY → Y, germxs 7→ ϵY (germxs) = s(x).

ϵY is well defined, since if t : V → Y is another cross-section with germxt = germxs, then there
is a neighbourhood of x, W ⊂ U ∩ V , such that s|W = t|W , which gives us that s(x) = t(x).

ϵY is continuous, as well. We will calculate ϵ−1
Y (V ) for an open set V ⊂ Y . If s(x) ∈ V , for a

point x ∈ X and a cross-section s : U → X, then p ◦ s(x) ∈ p(V )⇒ x ∈ p(V ). This means that
ϵ−1
Y (V ) = {germxs : x ∈ p(V ), s : U → Y }. However, this set is equal with⋃

x∈p(V )

⋃
U∈O(X),
x∈U

⋃
s∈ΓY (U)

ṡ(U),

which is a union of open sets, thus an open set in ΛΓY .
Furthermore, ϵ is natural in Y , so it is a natural transformation. This is displayed in the

following diagrams.

ΛΓY Y

ΛΓY ′ Y ′

ΛΓf

ϵY

f

eY ′

germxs s(x)

germxf ◦ s f ◦ s(x)

ΛΓf

ϵY

f

eY ′

For the morphism ΛΓf , we used that for a cross-section s : U → Y , we have that p ◦ s = i

(i : U ↪→ X), and for the map of bundles f : Y → Y ′, we have that p′ ◦ f = p. So, the map
f ◦ s : U → Y ′ is a cross-section of the bundle p′ : Y ′ → X, since p′ ◦ f ◦ s = p ◦ s = i, as wanted.
This means that ΛΓf(germxs) = germxf ◦ s.

Theorem 2.3.16. If the bundle of topological spaces p : Y → X is étale, then the natural trans-
formation ϵ with ϵY (germxs) = s(x) is a natural isomorphism, ΛΓY ∼= Y .
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Proof. We will prove that ϵY is an isomorphism by constructing an inverse, ϵ′Y : Y → ΛΓY .
Considering a point y ∈ Y , we have that p(y) = x ∈ X. Since p is étale, there is a neighbourhood
V of y, such that p|V : V → p(V ) is a homeomorphism. Thus, for the open set U = p(V ), there
is a cross-section s : U → Y with s(x) = y. Then, we can define ϵ′Y (y) = germxs ∈ ΛΓY .

ϵ′Y (y) is well-defined, since if t : U ′ → Y is another cross-section of the bundle with t(x) = y,
then s(x) = t(x), so from continuity of s and t there is a neighbourhood of x, W ⊂ U ∩U ′, such
that s|W = t|W , which means that germxs = germxt.

ϵ′Y is continuous, as well. For a base open set ṡ(U) = {germxs : x ∈ U, s : U → Y } ⊂ ΛΓY ,
we have

(ϵ′Y )
−1(ṡ(U)) = {y : s(x) = y, x ∈ U} = s(U).

s(U) is an open set, because of the properties of étale spaces. Hence, we have the desired
continuity.

Finally,
ϵY (ϵ

′
Y (y)) = ϵY (germxs) = s(x) = y,

and
ϵ′Y (ϵY (germxs)) = ϵ′Y (s(x)) = germxs.

As a result ϵY is a bijection and ϵ a natural isomorphism.

Theorem 2.3.17. For any topological space X, the following functors form an adjoint pair:

Λ: PSh(X) ⇄ Bund(X) : Γ.

Proof. We have already constructed the natural transformation ηP : P → ΓΛP (in Theorems
2.3.9 and 2.3.10), which maps each s ∈ PU to the corresponding cross-section ṡ : U → Λ(P ),
and the natural transformation ϵY : ΛΓY → Y , which maps each germxs to s(x). We will show
that these are the unit and counit of the adjunction, respectively.

For that purpose, we prove that the triangular identities hold:

Γ ΓΛΓ Λ

Γ ΛΓΛ Λ

ηΓ

id
Γϵ Λη id

ϵΓ

We go pointwise, so for the first identity, we consider a bundle p : Y → X and a cross-section
s ∈ ΓpU . Then s ηΓ7−→ ṡ

Γϵ7−→ s, since for any x ∈ U , ϵ(ṡ(x)) = ϵ(germxs) = s(x). Similarly, for the

second identity, we consider germxs ∈ Λ(P ) and then germxs
Λη7−−→ germxṡ

ϵΛ7−→ ṡ(x) = germxs.

Corollary 2.3.18. The adjoint pair (Γ,Λ) restrict to an equivalence of categories Sh(X) ≃
Etale(X).

Proof. The natural transformations η : IPSh(X) → ΓΛ and ϵ : ΛΓ → IBund(X) are isomorphisms
as stated in Theorems 2.3.9 and 2.3.16, respectively.

Corollary 2.3.19. We can describe a morphism between two sheaves F and G on X, h : F → G,
in three equivalent ways:

1. as a natural transformation of functors h : F → G
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2. as a continuous map of the associated bundles over X, h : ΛF → ΛG

3. as a family of functions hx : Fx → Gx, on the respective fibers over each x ∈ X, such that
for each open set U ⊂ X and each s ∈ F (U), the function U → ΛG with x 7→ hx(ṡ(x)) is
continuous.

Proof. The equivalence of (a) and (b) is proven in Corollary 2.3.18.
In order to obtain (c) from (a), consider hU : F (U) → G(U) natural in U . Then, for each

x ∈ X we can determine a unique hx : Fx → Gx such that the diagram commutes (which means
we have hx(germxs) = germxhU (s)).

F (U) G(U)

Fx Gx

germx

hU

germx

hx

Since ṡ(x) = germxs for x ∈ U , from the diagram we have

hU ◦ ṡ(x) = germx(hU (s)) = hx(germxs) = hx(ṡ(x)),

thus the function x 7→ hx(ṡ(x)) is actually hU ◦ ṡ, which is continuous.
Conversely, considering a family hx : Fx → Gx with this continuity condition, we can con-

struct hU like above or equivalently, by taking the disjoint union over the fibers, the map of
bundles h : ΛF → ΛG.

2.4 Sheaves with Algebraic Structure

In algebraic geometry and algebraic topology, many times we need to take the homology and
cohomology groups locally, which are essentially sheaves of groups. This was one of the main
motivations to consider the concept of sheaf. Thus, we need a way to define systematically
sheaves of groups, rings or any other algebraic structure, starting from the sheaves of sets we
have already defined. We will do this by diagrams. We show the case of an abelian group, but
any algebraic structure can be recreated in the same way.

An abelian group is a set A with a binary operation (addition), a unary operation (inverse)
and a nullary operation (zero; nullary because it is a function defined on a single object-the
terminal object). Thus we have:

A×A a−→ A, (x, y) 7→ x+ y,

A
v−→ A, x 7→ −x,

1
u−→ A, {∗} 7→ 0.

These operations satisfy certain identities: associative and commutative laws for a, v a left
inverse for a and u a left zero. Below we can see the respective commuting diagrams which
should be satisfied:
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Associativity:
A×A×A A×A

A×A A

id×a

a×id a

a

where id : A→ A is the identity function.
Commutativity:

A×A

A×A A

rev a

a

where rev : A×A→ A×A is the function with (x, y) 7→ (y, x).
Left inverse:

A A×A A×A

{∗} A

diag v×id

a

u

where diag : A→ A×A is the function with x 7→ (x, x) and the function A→ {∗} is the unique
morphism to the terminal object (the unique function to the one-element set).

Left zero:
{∗} ×A A×A

A

u×id

pr2
a

where pr2 : {∗} ×A→ A is the function with (∗, x) 7→ x.

Definition 2.4.1 (Abelian group object). In any category C with finite limits (so a terminal
object as well) we can define an abelian group object of C to be an object A, together with three
morphisms a, v, u as defined above, which make the aforementioned four diagrams commute.

The abelian group objects of C form the objects of the category Ab(C) with morphisms all
the morphisms f : A→ A′ that commute with a, v and u.

It is easy to observe that Ab = Ab(Set). We can formulate similar definitions for rings,
modules, etc. and any algebraic structure defined by one or more n-ary operations which satisfy
specific identities.

Now we can apply this definition to define sheaves of abelian groups:

Definition 2.4.2 (Presheaf of abelian groups). A presheaf of abelian groups, P , on a topo-
logical space X is an abelian group object in PSh(X) (or equivalently an object of the category
Ab(PSh(X))).

We can see that since the product in the category PSh(X) is the pointwise product in Set,
the operation of addition a for such a P is restricted to aU : P (U) × P (U) → P (U) natural to
U ∈ O(X), thus inheriting the properties of addition. The same holds for the other operations,
therefore P (U) is an abelian group. We can conclude that we can describe a presheaf of abelian
groups on X as a functor P : O(X)op → Ab.
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Similarly, we can define a sheaf of abelian groups on X as an abelian object of Sh(X)

or equivalently a functor F : O(X)op → Ab such that the composite with the forgetful functor
Ab→ Set is a sheaf of sets.

In a similar way, we can define a bundle of abelian groups over the space X: simply it is
an abelian group object in the category Bund(X). In this category the product of the bundle
p : Y → X is the pullback of p with itself in Top:

Y ×X Y Y

Y X

p

p

Considering the definition of pullback in Top, we conclude that Y ×X Y is the subspace of
Y × Y with elements all the pairs (y, y′) of points of Y that lie in the same fiber of p. As a
result, addition in the group object Y is defined by addition in each fiber p−1(x). Thus we
have an equivalent definition of bundle of abelian groups: it is a bundle of spaces p : Y → X,
such that each fiber p−1(x) is an abelian group in a way such that the generalised operations
a : Y ×X Y → Y and v : Y → Y are continuous maps and bundles over X. Specifically, for
Y ×X Y , we must have the following commutative diagram:

Y ×X Y Y

X

p′

a

p

where p′ : Y ×X Y → X is the map induced by the pullback square.
We have the same for étale spaces, as well, since the product of two étale spaces over X is

étale over X. This is immediate from the fact that the pullback of two local homeomorphisms
is a local homeomorphism (Lemma 2.5.3).

For categories C and D, if a functor Λ: C → D preserves finite products, then it is easy to
see that it maps any abelian group object in C to another abelian group object in D. Thus, it
induces a functor Ab(C)→ Ab(D).

Hence, in order to transfer the above results on sheaves of sets to sheaves of abelian groups,
it suffices to show that the functors Γ: Bund(X) → PSh(X) and Λ: PSh(X) → Bund(X)

preserve finite limits. Γ preserves finite limits, since for bundles p : Y → X and p′ : Y ′ → X, a
cross-section of the product bundle Y ×X Y ′ is just a pair of cross-sections s and s′, one of Y and
one of Y ′ respectively (it is a cross-section, because Y ×X Y ′ is pullback, so the compositions of
s with p and of s′ with p′ are inclusions). Equivalently, we could say that Γ is a right adjoint, so
it preserves all limits.

In the case of Λ, each fiber of ΛP at x, Px, is a colimit over the subcategory of O(X)op with
all open sets U that contain x, as we have seen in Remark 2.3.5. In this subcategory, if we have
two sets U and V , then their intersection is also in the subcategory, which means that it is a
"filtered" subcategory, which makes fibers filtered colimits. However, filtered colimits commute
with finite limits, hence Λ also preserves finite products (for more details, see [1])
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As a result, we get the same results as in Theorem 2.3.17 and Corollaries 2.3.18 and 2.3.11
for abelian groups. Thus we get a pair of adjoint functors:

Λ: Ab(PSh(X)) ⇄ Ab(Bund(X) : Γ)

which restrict to an equivalence of the categories Ab(Sh(X)) ≃ Ab(Etale(X)). Also, the
inclusion Ab(Sh(X)) ↪→ Ab(SetO(X)op) is reflective, which means that it has a left adjoint, the
sheafification functor of abelian groups. The same results also hold for rings, modules, etc.

2.5 Direct and Inverse Image

Definition 2.5.1 (Direct image). If f : X → Y is a continuous map of topological spaces, then
for each sheaf F on X, we can define a new sheaf f∗F , called direct image, such that for any
open V in Y , f∗F (V ) = F (f−1(V )), or diagrammatically it is the composition

O(Y )op
f−1

−−→ O(X)op
F−→ Set.

Then, f∗ : Sh(X)→ Sh(Y ) is a functor. Also, (f ◦ g)∗ = f∗ ◦ g∗, so by defining Sh(f) = f∗,
we have made Sh a functor on the category of topological spaces.

Remark 2.5.2. If f : X → Y is a homeomorphism, then f∗ is an isomorphism of the categories
Sh(X) and Sh(Y ).

For a given continuous map f : X → Y , we can also define a functor between sheaves in the
opposite direction; f∗ : Sh(Y ) → Sh(X). We will define this using the equivalence of sheaves
with étale spaces. Considering a bundle over Y , p : E → Y , we can define a bundle over X,
f∗p : f∗E → X as the pullback of p along f .

f∗E E

X Y

f∗p p

f

f∗ is a functor and furthermore we have the following result:

Lemma 2.5.3. If f : X → Y is a continuous map between topological spaces and p : E → Y is
an étale space over Y , then f∗E → X is étale over X.

Proof. The pullback f∗E is the space {⟨x, e⟩ : x ∈ X, e ∈ E, f(x) = p(e)}. Taking a point ⟨x, e⟩,
we have that since p is étale, there is an open neighbourhood U of e in E, which is mapped
homeomorphically by p onto an open set p(U) in X. Then, from continuity of f , we get that
f−1(p(U))×U is an open set in X ×E containing ⟨x, e⟩, thus (f−1(p(U))×U)∩ f∗E is an open
neighbourhood of ⟨x, e⟩ in the pullback and it is mapped homeomorphically onto f−1(p(U)) in
X. Therefore, f∗p : f∗E → X is étale.

Definition 2.5.4 (Inverse image). Now, using the equivalence of categories in Corollary 2.3.18
and Lemma 2.5.3, we can define f∗ : Sh(Y )→ Sh(X) as the composition of:

Sh(Y )
Λ−→ Etale(Y )

f∗−→ Etale(X)
Γ−→ Sh(X).

For a sheaf G on Y , we call f∗(G) ∈ Sh(X)‘ the inverse image of G.
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Theorem 2.5.5. Let f : X → Y be a continuous map, then the inverse image functor f∗ : Sh(Y )→
Sh(X) is left adjoint to the direct image functor f∗ : Sh(X)→ Sh(Y ).

f∗ : Sh(Y ) ⇄ Sh(X) : f∗

For proof, see [2].

2.6 The category of sheaves is a topos

In this section, we recall the notion of elementary topos and we show that the category of sheaves
is a topos.

Definition 2.6.1 (Elementary topos). An elementary topos is a category which

• has finite limits,

• is cartesian closed (has exponentials), and

• has a subobject classifier.

In this section, we will show that the category Sh(X) of the sheaves of sets over a space X
is a topos. We start by proving the existence of all finite limits.

Proposition 2.6.2. The category Sh(X) of the sheaves of sets over a space X has all finite
limits and the inclusion of sheaves in the category of presheaves preserves these limits.

See proof in [2], II.8.
From the previous proposition, we get a useful corollary for later.

Corollary 2.6.3. Consider a sheaf F and a subobject of F represented by the monic m : S ↣ F .
Then S is isomorphic to a subsheaf of F .

Proof. Since m is a monic, we have the pullback square in Sh(X):

S S

S F

id

id m

m

By Proposition 2.6.2, this is also a pullback in the category of presheaves on X, PSh(X). In
this category, pullbacks are taken pointwise, which means that each mU for every open U ⊂ X

is monic. Therefore, S(U) is isomorphic to a subset S′(U) of F (U) and thus S is isomorphic to
the subfunctor S′ of F . Finally, S′ is a sheaf, because it is isomorphic to the sheaf S.

The second property we need is the existence of all exponentials.

Proposition 2.6.4. Consider F a sheaf and P a presheaf on a topological space X. Then the
exponential presheaf FP is a sheaf.
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Proof. For the definition of the exponential, we see F and P as functors O(X)op → Set. Then,
the exponent is the functor FP : O(X)op → Set such that for an open U ⊂ X:

FP (U) = Hom(y(U)× P, F )

where Hom denotes the hom-set in the functor category SetO(X)op = PSh(X), in other words
the natural transformations, and y(U) = HomO(X)(−, U) is the Yoneda embedding, which in the
respected category means that y(U)(V ) is {∗} if V ⊂ U , otherwise it is empty. As a result, the
natural transformations in FP (U) are defined only for open sets V ⊂ U , so we get

FP (U) ∼= Hom(P |U , F |U )

where now the hom-set is in the category of presheaves on U and P |U and F |U are the functors
P and F restricted to O(U)op.

It is easy to see that FP (U) is a functor of U : for every natural transformation a : P |U → F |U ,
if V ⊂ U , then we get the restriction a|V : P |V → F |V , which means that FP (U) ⊂ FP (V ).
Hence, FP is the presheaf on O(X)op which maps any open U to the maps P |U → F |U of
presheaves on U .

Considering a covering
⋃
i Ui = U and natural transformations τi : P |Ui → F |Ui for all i, we

can construct the transformation τ : P |U → F |U by collation of the respective τi. An easy way to
see this is that a natural transformation is computed pointwise, so for open V ⊂ U , τV (P |U (V ))

is the set resulting from the collation of τi,V (P |Ui(V )) ∈ F |Ui(V ), which is possible, since F is a
sheaf.

Next, we need to define a subobject classifier Ω for Sh(X). So, we define the presheaf on X,
Ω, by taking Ω(U) to be the set of all open subsets of U for every open U ⊂ X:

Ω(U) = {W | W ⊂ U,WopeninX}.

This is clearly a functor, because if V ⊂ U , then we get the map Ω(U)→ Ω(V ) with W 7→W∩V .

Proposition 2.6.5. The presheaf Ω on the topological space X is a sheaf on X and a subobject
classifier in the category Sh(X).

Proof. We consider an arbitrary open set U ⊂ X and a covering of it
⋃
i Ui = U . Then, we

take for every i, elements of the sets Ω(Ui), which means open sets Vi ⊂ Ui which agree in
the intersection, so for all i, j, Vi ∩ Uj = Vj ∩ Ui ⊂ Ui ∩ Uj (Vi ∩ Uj is the mapping of Vi
through the morphism Ui → Ui ∩ Uj as defined above). Then, we can get a unique open set
V ∈ Ω(U), such that for any i the restriction V ∩ Ui = Vi. This is the union of Vi’s, because
V ∩Ui =

⋃
j Vj ∩Ui =

⋃
j(Vj ∩Ui) =

⋃
j(Vi ∩Uj) = Vi ∩

⋃
j Uj = Vi ∩U = Vi. If there is another

V ′ with V ′ ∩ Ui = Vi, then V ∩ V ′ =
⋃
i Vi ∩ V ′ =

⋃
i(Vi ∩ V ′) ⊂

⋃
i(Ui ∩ V ′) =

⋃
i Vi = V , thus

V ⊂ V ′, which means that V is an element of the equaliser. Therefore, Ω(U) is the equaliser
and Ω is a sheaf.

Next let S ⊂ F be a subobject of the sheaf F . From Corollary 2.6.3, we can assume that S
is a subsheaf of F . In other words, for each open U ⊂ X, S(U) is a subset of F (U).

We define as the suggested characteristic natural transformation ϕ : F → Ω with the functions
ϕU : F (U) → Ω(U) for each open U ⊂ X, which map each x ∈ F (U) to the union W of all the



CHAPTER 2. SHEAVES ON TOPOLOGICAL SPACES 19

open subsets Wi ⊂ U with x|Wi ∈ S(Wi). Then, x|W ∈ S(W ), since S is a sheaf, and ϕU is
natural in U . To see the latter, we present the commutative diagram below. For an open V ⊂ U :

F (U) Ω(U)

F (V ) Ω(V )

ϕU

ϕV

x W

x|V W ∩ V

ϕU

ϕV

Now, we define the map true : 1 → Ω, where 1 is the terminal object of Sh(X), as the map
that for each U sends the point {∗} to U . We then consider the pullback of true along ϕ and we
take it pointwise, as well:

P 1

F Ω

true

ϕ

P (U) 1

F (U) Ω(U)

true

ϕ

As a result, P (U) is the subset of F (U) with all those x ∈ F (U), such that ϕU (x) = U . But
these elements are exactly the elements of S(U) (if x ∈ S(U) then x|W ∈ S(W ) for any open
W ⊂ U , so ϕU (x) = U and if ϕU (x) = U , we showed above that x = x|U ∈ S(U)). We conclude
that the pullback P is exactly the subsheaf S.

Furthermore, if S is a pullback along any other ψ : F → Ω, then ψ|U (x) = U if and only if
x ∈ S(U). Also, since ψ is a natural transformation, for V ⊂ U we get the commutative diagram:

F (U) Ω(U)

F (V ) Ω(V )

ψU

ψV

x ψ(x)

x|V ψ(x) ∩ V

ψU

ψV

Hence, combining these two properties, we get ψ(x) ∩ V = V if and only if x|V ∈ S(V ). This
shows immediately that

⋃
x∈S(V ) V ⊂ ψ(x). Also, assuming there is an open set W ⊂ ψ(x)

with W ̸⊂
⋃
x∈S(V ) V , we have that ψ(x) ∩ W = W , thus x|W ∈ S(W ), which means that

W ⊂
⋃
x∈S(V ) V . Therefore, ψ(x) =

⋃
x∈S(V ) V , which means that ψ = ϕ, so ϕ is unique.

Concluding, Ω is a sheaf and the map true : 1→ Ω is a subobject classifier.

Finally, we have the conclusion we desired:

Corollary 2.6.6. The category of sheaves over a topological space X, Sh(X), is an elementary
topos.

Proof. We have shown that Sh(X) has all finite limits (Proposition 2.6.2), exponentials (Propo-
sition 2.6.4) and a subobject classifier (Proposition 2.6.5). It suffices to show that it has all
colimits, too.

The sheafification functor ΓΛ: PSh(X) → Sh(X) is left adjoint to the inclusion functor
from Corollary 2.3.11, thus it preserves colimits. Also, for a sheaf F it is the isomorphic to the
identity functor ΓΛ(F ) ∼= F . So, if we have some finite diagram of sheaves A, we can take their
colimit in the functor category (where all colimits exist). Then, since A is a diagram of sheaves,
ΓΛ(A) ∼= A,

lim−→
PSh(X)

(A) ∼= lim−→
PSh(X)

(ΓΛ(A)) ∼= ΓΛ( lim−→
PSh(X)

(A))
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(last isomorphism comes from the fact that ΓΛ preserves colimits. Hence, the colimit of A is a
sheaf, in other words there is the colimit of any diagram of sheaves.

Therefore, we get that Sh(X) is an elementary topos.



Chapter 3

Grothendieck Topology and Sheaves on
Sites

The main idea in this chapter is to generalise the notion of sheaves from the category of open
spaces of a topological space to any category that this notion may be useful. For this, we need
an alternative notion of covering of an object, which we call Grothendieck topology. A site then,
a category with its Grothendieck topology, is the space where we define the sheaves on.

3.1 Grothendieck Topology

We start by giving a more general definition of sieve.

Definition 3.1.1 (Sieve). Given an object K in the category C, a sieve on K is a set S of
morphisms with codomain K such that if f ∈ S and for another morphism h, f ◦ h is defined,
then f ◦ h ∈ S.

We can think of a sieve as "the set of paths that are allowed to lead to K". Then, if there is
a path to go somewhere and from there, there is an allowed path to K, then you are allowed to
do so.

Proposition 3.1.2. Given an object K in the category C, a sieve on K is equivalent with a
subfunctor of the Yoneda embedding y(K) = HomC(−,K).

Proof. Given a sieve S on K, we can define

Q(A) = {f | f : A→ K, f ∈ S},

which is a subset of HomC(A,K). However, it is easy to see that Q is a functor Cop → Set.
Therefore, Q is a subfunctor of y(K).

Conversely, given a subfunctor Q of y(K), we can define the set

S = {f | ∃A ∈ Ob(C) f : A→ K, f ∈ Q(A)}.

Then, if for a morphism in S, f : A → K and another morphism h : B → A (f ◦ h is defined),
we see that f ◦ h = Q(h)(f) ∈ Q(B), which means that f ◦ h ∈ S, so S is a sieve.

21
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We will try to create the notion of a sheaf on a category, step by step, in analogy with the
case of topological spaces. We consider a category C and an object K ∈ Ob(C). We can define
presheaves on C as the functors F : Cop → Set.

The next step for the description of sheaves is to define what are the coverings of K. In
analogy to sheaves on topological spaces, where a covering is a collection of subsets of the initial
set, thus open sets that are mapped to the initial set by morphisms with codomain to the initial
set, we set a covering to be a collection of maps with codomain K, so

S = {fi : Ki → K | i ∈ I}.

Since every open set may have different coverings, we may assume that for each object there are
also different coverings, so we denote with J (K) all the different coverings of K.

Note that for a covering S = {fi : Ki → K | i ∈ I}, we can isolate an object Km and consider
a covering of it Sm = {gj : Kmj → Km}. Then, the covering S \ {fm} ∪ {fm ◦ gj : Kmj → K} is
essentially the same covering as S. Hence, in order to contain all these equivalent coverings, we
can consider a covering S to be a sieve.

Now, we can summarise these ideas in the concept of Grothendieck topology, where there are
also some properties added.

Definition 3.1.3 (Grothendieck topology). A Grothendieck topology on a category C is a
function J which maps each object K of C to a collection J (K) of sieves, such that J satisfies
the properties:

1. The maximal sieve Smax
K = {f | codom(f) = K} (which is equivalent with the Yoneda

embedding y(K)) is in J (K).

2. (Stability axiom) If S ∈ J (K), then for any morphism h : A→ K, h∗(S) = {g | codom(g) =

A, h ◦ g ∈ S} ∈ J (A).

3. (Transitivity axiom) If S1 ∈ J (K) and S2 is a sieve on K with h∗(S2) ∈ J (A) for any
h : A→ K in S1, then S2 ∈ J (K).

Definition 3.1.4 (Site). We call the pair C = (C,J ) of a category and a Grothendieck topology
on it, a site. The elements of the collection J (K) for an object K are called covers.

We give some examples of Grothendieck topologies.

1. The trivial topology on the category C has only one sieve for each object K, which is
the maximal sieve Smax

K . This is obviously the minimal topology we can have.

2. The atomic topology on the category C is the one with covers all the non-empty sieves
(S ∈ J (K) ⇐⇒ S is non-empty). In order the topology to satisfy the stability axiom,
we need a condition called the Ore condition, which is whenever we have two morphisms
with the same codomain, f : A→ K and g : B → K, then we can complete the Ore square
such that it is commutative (a condition weaker than the condition of pullbacks):

• A

B K.

f

g
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Particularly, we can show that the atomic topology is a Grothendieck topology if and only
if the category C satisfies the Ore condition.

3.2 Sheaves on a Site

For the classical definition of sheaves, we need to find a way to express the union of two open
sets. But this is just the fiber product of two maps. This means that if we have the pullback
square

Ki ×K Kj Kj

Ki K,

hij

vij fj

fi

then applying the presheaf P : Cop → Set, we get:

P (Ki ×K Kj) P (Kj)

P (Ki) P (K).

P (hij)

P (vij)

P (fi)

P (fj)

In the end, P is a sheaf if for a cover S ∈ J (K) the diagram below is an equaliser:

P (K)
∏
fi∈S

P (Ki)
∏

fi,fj∈S
P (Ki ×K Kj),

e
p1

p2

However, it is possible that the category of interest does not have fiber products. So, we
define the sheaves on a site in analogy with the equivalent definition in Proposition 2.2.1, which
in this case is proven to be more general.

Definition 3.2.1 (Sheaf on a site). A presheaf P on a site C is a sheaf if and only if for every
covering sieve S on K, the inclusion functor S ↪→ y(K) induces the isomorphism

HomPSh(C)(S, P ) ∼= HomPSh(C)(y(K), P ).

In more detail, if we have a presheaf P : Cop → Set on the site C = (C,J ) and a sieve S
which is a cover of the object K, we say that a matching family for S with elements of P
is a function which maps each element f : A → K of S to the element xf ∈ P (A), such that
P (g)(xf ) = xf◦g (f ◦ g ∈ S since S is a sieve) for every morphism g : B → A. We can see
how matching family compares with open sets that agree in their intersection, which is in the
definition of sheaves on topological spaces. So, the next thing to introduce for the definition of
sheaf is a single element x ∈ P (K) that can generate all the elements of a matching family, in
other words xf = P (f)(x) for every f ∈ S. We call this an amalgamation of this matching
family.

Therefore, P is a sheaf for the Grothendieck topology J , if for every matching family of P
for every cover of any object in C, there is a unique amalgamation.

We can express this with an equaliser diagram: We say that a presheaf P on C is a sheaf if
and only if for every object K and any cover S ∈ J (K) the following diagram is an equaliser.
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P (K)
∏
f∈S

P (dom(f))
∏
f∈S,

dom(f)=codom(g)

P (dom(g))e
p1

p2

Here we have the map e(x) = {P (f)(x)}f∈S and the other two maps, which regard a matching
family, so we have p1({xf}f∈S) = {xf◦g}f,g and p2({xf}f∈S) = {P (g)(xf )}f,g.

In order to see the equivalence of this definition with the previous one, we can consider a
matching family f 7→ xf of a cover S of an object K, as a natural transformation from S to
P (and conversely). So, if there is a unique amalgamation x, then we can consider it to be the
mapping 1K 7→ x, which gives us f 7→ P (f)(x) for any f with codomain K, which is a unique
natural transformation from y(K) to P .

Definition 3.2.2 (Grothendieck topos). A Grothendieck topos is a category which is equiv-
alent to some category Sh(C) on a site C = (C,J ).

3.3 Sheafification

Like in the case of sheaves on a topological space, there is a functor a : PSh(C)→ Sh(C), which
maps every presheaf on C to an associated sheaf. This process is called sheafification and we
denote the associated sheaf of the presheaf P , as P# = a(P ).

Theorem 3.3.1. For a given site C = (C,J ), the inclusion functor i : Sh(C) ↪→ PSh(C) has a
left adjoint

a : PSh(C)→ Sh(C)

called the sheafification or associated sheaf functor.

In this section, we prove this theorem and give the construction of this functor.
Given a presheaf P ∈ PSh(C), we construct a new presheaf P †, which for an object K is

calculated by
P †(K) = lim−→

S∈J (K)

Match(S, P )

where Match(S, P ) is the set of matching families of P for the cover S of K, their morphisms
are those induced by reverse inclusion, and the colimit is taken over all covers of K.

We will see that the presheaf P † is not necessarily a sheaf, but it is a separated presheaf,
which means that every matching family has at most one amalgamation. In other words, P †

satisfies the uniqueness condition of sheaves, but not the existence condition. However, we will
show that if P is separated, then P † is in fact a sheaf, therefore we can construct the associated
sheaf as P# = (P †)†.

In order to understand the functor P †, we can use the definition of colimits in the category
Set. So, an element of P †(K) is an equivalence class of matching families x = {xf | f : A →
K, f ∈ S} (which means that xf ∈ P (A) and for a morphism g : B → A, P (g)(xf ) = xf◦g).
Two families x = {xf | f ∈ S} and y = {yg | g ∈ R} are equivalent, if there is a sieve T ⊂ S ∩R
with T ∈ J (K), such that xf = yf for every f ∈ T .
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P † is a functor Cop → Set, since for a morphism h : K → K ′, we have

P †(h)({xf | f ∈ S} = {xh◦g | g ∈ h∗(S)}, (3.1)

so P †(h) is a morphism P †(K ′)→ P †(K) and is well-defined because of the stability axiom.
Furthermore, the mapping P 7→ P † is a natural transformation, because for ϕ : P → Q, it is

easy to deduce ϕ† : P † → Q†.
Finally, we can define the morphism η : P → P †, which for x ∈ P (K), gives ηK(x) =

{P (f)(x) | f ∈ Smax
K }.

Next, we introduce some lemmas.

Lemma 3.3.2. A presheaf P is separated if and only if η : P → P † is monomorphism.

Proof. η being a monomorphism is equivalent with all the corresponding maps ηK for K ∈ Ob(C)
being monomorphisms. If P is separated, then for x, y ∈ P (K), if ηK(x) = ηK(y), then the
matching family ηK(x) has at most one amalgamation, which means x = y. Conversely, if ηK is
monomorphism, then every matching family on the maximal sieve has at most one amalgamation,
thus every matching family on any covering sieve (since they are contained in the maximal sieve),
so P is separated.

Lemma 3.3.3. A presheaf P is a sheaf if and only if η : P → P † is isomorphism.

Proof. The proof is like the previous one, but in addition to the uniqueness property, we also
use the existence property.

Lemma 3.3.4. Any morphism from the presheaf P to a sheaf F , ϕ : P → F factors uniquely
through η (in other words, there is a morphism ϕ′ with ϕ = ϕ′ ◦ η.

P P †

F.

ϕ

η

ϕ′

Proof. As mentioned above, the elements of P †(K) are matcing families of the form {xf | f ∈ S}
for a cover S of the object K. If we have a morphism, h : A → K, which belongs to S, then
ηA(xh) = {P (g)(xh) | codom(g) = A}. Moreover, P †(h)({xf | f ∈ S} = {xh◦f ′ | f ′ ∈ h∗(S)}.
Since h ∈ S, then h∗(S) = Smax

A . Combining these two facts we get that ηA(xh) = P †(h)({xf | f ∈
S}).

Therefore, if the map ϕ′ exists, we have that

F (h)(ϕ′({xf | f ∈ S})) = ϕ′(P †(h)({xf | f ∈ S})) = ϕ′(ηA(xh)) = ϕ(xh),

for all h ∈ S. Therefore, ϕ′({xf | f ∈ S}) is the unique value y, with F (h)(y) = ϕ(xh) for all
h ∈ S. But this exists, since F is a sheaf and {ϕ(xh) | h ∈ S} is a matching family.

Lemma 3.3.5. For any presheaf P , P † is a separated presheaf.
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Proof. Let K be an object of C and S a cover of K. Also, assume we have two elements
x,mathbfy ∈ P †(K) with P †(h)(x) = P †(h)(y) for every h ∈ S. In order to show that P † is
separated, it suffices to prove that x = y.

The elements x and y are equivalence classes of matching families, so we can express them
as x = {xf | f ∈ R} and y = {yg | g ∈ T}, where R, T ∈ J (K).

From P †(h)(x) = P †(h)(y), with h : A → K, we deduce that there is a cover Qh of A, such
that Qh ⊂ h∗(R)∩h∗(T ) and xh◦t = yh◦t for all t ∈ Qh. By the transitivity axiom, we have that
the cover Q = {h ◦ t | h ∈ S, t ∈ Q} is a cover of K and also Q ⊂ R ∩ T . Therefore, the two
matching families are equivalent, thus x = y.

Lemma 3.3.6. For any separated presheaf P , P † is a sheaf.

Proof. From the previous lemma, we have that for every matching family of P † there is at most
one amalgamation, so it suffices to prove the existence of an amalgamation. So, we assume
an object K, a cover S ∈ J (K) and a matching family {xf | f ∈ S}. Here xf ∈ P †(A) if
f : A → K, so it is itself an equivalence class of a matching family, xf = {xf,g | g ∈ Sf} for a
cover Sf ∈ J (A).

Since {xf | f ∈ S} is an equivalence class, for a morphism h : A′ → A, we have P †(h)(xf ) =

xf◦h ∈ P †(A′). So, from relation 3.1, we get the equivalence of families

{xf,h◦g′ | g′ ∈ h∗(Sf )} ≡ {xf◦h,g | g ∈ h∗(Sf◦h)}.

Thus, from the definition, we have a cover ofA′, Tf,h ⊂ h∗(Sf )∩Sf◦h, such that xf,h◦g = xf◦h,g

for every g ∈ Tf,h.
Next, we set Q to be the sieve {f ◦ g | f ∈ S, g ∈ Sf}, which is a cover of K from the

transitivity axiom. We define a matching family for this cover, y, as yf◦g = xf,g (as above),
which is independent of f and g. To prove that, we use the last equation we proved. Assuming
f ◦ g = f ′ ◦ g′ for f, f ′ ∈ S, g ∈ Sf and g′ ∈ Sf ′ , we take a morphism k ∈ Tf,g ∩ Tf ′,g′ and we
have

P (k)(xf,g) = xf,g◦k = xf◦g,k = xf ′◦g′,k = xf ′,g′◦k = P (k)(xf ′,g′)

where we used that xf ,xf ′ are matching families. P is separated, hence we get that xf,g = xf ′,g′ ,
which means that y is well defined.

Since for every f ∈ S, xf is a matching family, we conclude that y is also a matching family
for the cover Q ∈ J (K), so it is an element of P †(K).

Now, we can show that y is the amalgamation of the matching family {xf | f ∈ S}. It suffices
to show that for a morphism f : A→ K,

P †(y) = xf ⇐⇒ {yf◦h | h ∈ f∗(Q)} = {xf,g | g ∈ Sf}

in P †(A). But these two families are equivalent, since from the definition of Q, Sf ⊂ f∗(Q) and
for any g ∈ Sf , yf◦g = xf,g again from the definition. As a result, P † is a sheaf.

We now give the proof of Theorem 3.3.1.
Proof of Theorem 3.3.1. As we mentioned, a(P ) = (P †)†. From Lemmas 3.3.5 and 3.3.6,

this gives us indeed a sheaf. Also, the map P
ηP−→ P † η

P†−−→ P# is universal among maps of the
presheaf P to sheaves from lemma 3.3.4, so Nat(P, F ) ∼= Nat(a(P ), F ), which means that a is
left adjoint to the inclusion functor.



Chapter 4

Equivalence of Sheaves on Group
Categories

In this section, we mainly present the result of [3], which is the equivalence of the category of
G-sets (set representations) of a finite group G with the Grothendieck topos on the orbit category
of the group G. We initially define these two notions and we continue by presenting the tools we
use.

Definition 4.0.1 (G-Sets). Let G be a group. A set X is called a G-set, if there exists a
G-action a : X ×G→ X that satisfies:

• the property of identity: x · e : = a(x, e) = x for all x ∈ X and e ∈ G the group identity,
and

• the property of compatibility: (x ·g) ·h : = a(a(x, g), h) = a(x, gh) = x · (gh), for all x ∈ X
and all g, h ∈ G.

The category Set−G has objects all G-sets and morphisms all the functions between the sets
that respect the group actions (f(x · g) = f(x) · g for a function f and all x ∈ X, g ∈ G).

Definition 4.0.2 (Orbit category). For a group G, the orbit category, denoted by O(G), is
the category with:

• objects all the cosets of G, G/H for a subgroup H,

• morphisms all the group homomorphisms between cosets.

Since the orbits (G/H) can be considered as G-sets, it is easy to see that O(G) is a full
subcategory of Set−G.

4.1 Continuous and Cocontinuous Functors

Definition 4.1.1 (Restriction and Kan extensions). Let a : C → D be a (covariant) functor.
Then we can define the restriction along a, Resa : PSh(D) → PSh(C) with F 7→ F ◦ a.
This functor has two adjoint functors, the left and right Kan extensions along a, denoted
LKa : PSh(C)→ PSh(D) and RKa : PSh(C)→ PSh(D), respectively.

27
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In the theory of Kan extensions, many times we need the notion of comma category.

Definition 4.1.2 (Comma category). Let a : C → D be a (covariant) functor and d ∈ Ob(D).
Then the comma category d/a has objects {(t, x) | t : d → a(x), x ∈ Ob(C)} and morphisms
(t, x)

u−→ (t′, x′), which is derived by a morphism u : x→ x′ in C, such that t′ = a(u) ◦ t.

We introduce two new type of functors between two sites, which will help us compare the
sheaves on these two sites.

Definition 4.1.3 (Continuous and cocontinuous functors). Given two sites C = (C,JC) and
D = (D,JD), a functor a : C → D is called continuous if ∀x ∈ Ob(C) and ∀Sx ∈ JC(x), the
image of the sieve a(Sx) generates a covering sieve on a(x) (cover-preserving condition) and
∀d ∈ Ob(D), the opposite comma category (d/a)op is filtered (which means that every filtered
diagram has a cocone–flatness condition).

A functor b : C → D is called cocontinuous if ∀x ∈ Ob(C) and ∀Sb(x) ∈ JD(b(x)), ∃Sx ∈
JC(x) with b(Sx) ⊂ Sb(x) (cover-reflecting condition).

Definition 4.1.4 (Geometric morphisms). Let C = (C,JC) and D = (D,JD) be two sites. A
geometric morphism between Grothendieck topoi Ψ: Sh(D) → Sh(C) is given by a pair of
functors (Ψ∗,Ψ∗) where Ψ∗ : Sh(C) → Sh(D) is left exact and left adjoint to Ψ∗ : Sh(D) →
Sh(C). Ψ∗ is called the inverse image part of the geometric morphism and Ψ∗ is the direct
image part.

Proposition 4.1.5. A continuous functor a : C → D induces a morphism of topoi

Ψ = (Ψ∗,Ψ∗) : Sh(D)→ Sh(C),

where Ψ∗ = Resa : Sh(D)→ Sh(C) and Ψ∗ = LK#
a : Sh(C)→ Sh(D).

A cocontinuous functor b : C → D induces another morphism of topoi

Φ = (Φ∗,Φ∗) : Sh(C)→ Sh(D),

where Φ∗ = RKb : Sh(D)→ Sh(C) and Φ∗ = Res#b : Sh(D)→ Sh(C).

See [4] in pages 563-565, 574.

4.2 The Transporter Category

From now on, we take a group G and we consider it as a category with one element (•) and the
elements of the group as the automorphisms of •. We also take a G-poset P, which we consider as
a category with objects being the elements of the poset P and morphisms of the form lyx : x→ y

for x, y ∈ P, if x ≤ y. We denote xg the image of the element x ∈ P under the action of the
element g ∈ G and also (lyx)g = ly

g

xg the image of the morphism lyx under the action of g ∈ G.

Definition 4.2.1 (Abstract transporter category). Let P be a G-poset. Then the (abstract)
transporter category P ⋊ G is a category with the same objects as P and with morphisms
the formal products lyxg : xg

−1 → y where lyx ∈ Mor(P) and g ∈ G.
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For convenience, we write lyxgg : x → y. For the composition, if we have lyxgg : x → y and
lx
whh : w → x, we get (lyxgg)(lxwhh) = ly

whg(hg) : w → y. Also, it is useful to see that any morphism
lyxgg factorises as (lyxg1)(l

xg
xgg).

We note that a transporter category does not always meet the Ore condition, for example
when the poset has two initial (minimal) objects. For that reason, it is more convenient to
consider posets with only one initial object.

Every transporter category has a corresponding natural functor π : P ⋊ G → G, such that
x ∈ P 7→ • and lyxgg 7→ g.

Example 4.2.2. We can consider P = S(G), where S(G) is the poset of all subgroups of G
with action being the conjugation (for H ∈ S(G) and g ∈ G, Hg = g−1Hg). Then T (G) =

S(G) ⋊ G is called the (complete) transporter category. In T (G), we have the morphism
sets HomT (G)(H,K) = {lKHg : H → K | g−1Hg ⊂ K} for H,K ∈ S(G).

Proposition 4.2.3. For a group G, the category T (G) has fibre products. Hence it satisfies the
Ore condition and we can equip it with the atomic topology, resulting the site TG = (T (G),Jat).

Proof. We consider two morphisms lLHgg : H → L and lL
Kg′g

′ : K → L. We will show that the
subgroup M = Hg ∩Kg′ along with the morphisms lH

Mg−1g
−1 : M → H and lK

Mg′−1g
′−1 : M → K

are the pullback (lH
Mg−1 ∈ Mor(S(G)), since Mg−1

= (Hg ∩Kg′)g
−1

= H ∩Kg′g−1 ⊂ H).

M = Hg ∩Kg′ K

H L

lK
Mg′−1 g

′−1

lH
Mg−1 g

−1 lL
Kg′ g

′

lL
Hg g

Consider another subgroup N with morphisms lH
Nhh : N → H and lK

Nh′h
′ : N → K that make

the square below commute:

N K

H L

lK
Nh′ h

′

lH
Nhh lL

Kg′ g
′

lL
Hg g

This means that

(lLHgg)(lHNhh) = (lL
Kg′g

′)(lK
Nh′h

′) ⇐⇒ lLNhghg = lL
Nh′g′h

′g′,

so we have that Nhg = Nh′g′ . From the morphism lH
Nhh, we get that Nh ⊂ H ⇒ Nhg ⊂ Hg

and similarly lK
Nh′h

′ means that Nh′ ⊂ K ⇒ Nh′g′ ⊂ Kg′ . Therefore, Nhg = Nh′g′ ⊂ Hg ∩Kg′

and there is a morphism lM
Nhghg : N → M . We can see that (lH

Mg−1g
−1)(lM

Nhghg) = lH
Nhh and

(lK
Mg′−1g

′−1)(lM
Nhghg) = (lK

Mg′−1g
′−1)(lM

Nh′g′h
′g′) = lK

Nh′h
′, which means that M = Hg ∩ Kg′ is

universal, thus the pullback.

It is also obvious that the single-object category G has fibre products • ×• • = •, so we can
also equip it with the atomic topology, which is the same as the trivial topology.
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Definition 4.2.4 (Category extension). We call category extension, a sequence of two functors

K i−→ E ρ−→ C,

which have the properties:

1. The three categories K, E , C have the same objects and i and ρ are identities on objects.

2. i is injective on morphisms and ρ is surjective on morphisms.

3. There are u, v ∈ Mor(E) with ρ(u) = ρ(v), if and only if there is a unique morphism
w ∈ Mor(K) such that u ◦ i(w) = v.

Proposition 4.2.5. Let K i−→ E ρ−→ C be a category extension. Then, K has the form
∐
x∈Ob(C)K(x),

where K(x) is category with only one object, x, and morphisms, all the automorphisms of x that
are mapped to 1x by ρ ◦ i.

Proof. We assume that there is at least a morphism in K, u : x→ y with x ̸= y. Then, we have
that 1x ◦ i(u) = i(u) and u is the only morphism in K with this property, since i is an injection
in morphisms. As a result we have that ρ(1x) = ρ(i(u)), which means that x = y. So, the only
morphisms in K are automorphisms and we have that K is of the form

∐
x∈Ob(C)K(x).

Also, from the relation ρ(1x) = ρ(i(u)), we get that ρ ◦ i(u) = 1x, so every automorphism in
K is mapped to 1x by ρ◦ i. 1x and i(u) satisfy the condition of property 3, thus there is a unique
u′ ∈ Mor(K), such that 1x = i(u) ◦ i(u′) = i(u ◦ u′) ⇒ u ◦ u′ = 1x. So, u has the right inverse
u′ and similarly u′ has a right inverse which must be equal to u. Therefore, every morphism has
an inverse, and K(x) is a group.

We can see from the first isomorphism theorem that if K(x) is always trivial, then C ∼= P⋊G.
We consider a category extension K i−→ P ⋊G

ρ−→ C with the natural functor to G:

K

P ⋊G

G C

i

ρ
π

We can consider K(x) to be subgroups of AutP⋊G(x) and K =
∐
x∈Ob(C)K(x).

In this picture, we know that PSh(G) = Set−G. Also, for a G-Set M , we get the presheaf
κM = Resπ(M), which is constant on objects (sends every object of P ⋊ G to the set M).
Furthermore, the right and left Kan extensions along π are isomorphic to limits and colimits
respectively (see [5]).

Our purpose is to construct the respective picture for sheaves.
At first, we need some sort of Grothendieck topology for the categories P ⋊ G and C. We

introduce the next lemma to see how we can equip these categories with the atomic topology.



CHAPTER 4. EQUIVALENCE OF SHEAVES ON GROUP CATEGORIES 31

Lemma 4.2.6. Suppose a group G and a G-poset P with an initial object. Then P ⋊G satisfies
the Ore condition, thus it can be equipped with the atomic topology. Moreover, ∀x ∈ Ob(P ⋊G),
there is a unique minimal non-empty sieve.

Proof. We call the unique initial object of P, x0. If for any g ∈ G, xg0 ̸= x0, then x0 < xg0 ⇒
xg

−1

0 < x0, which is a contradiction, therefore xg0 = x0 for all g ∈ G.
We shall prove that P ⋊G satisfies the Ore condition. Assume two morphisms lxygg : y → x

and lx
zh
h : z → x. Then, we can complete the Ore square with the morphisms lyx0g−1 : x0 → y

and lzx0h
−1 : x0 → z, since (lxygg)(l

y
x0g

−1) = lxx01 = (lx
zh
h)(lzx0h

−1). Therefore, P ⋊G can be given
the atomic topology.

Next, let S be a non-empty sieve on x ∈ Ob(P), which contains the morphism lxygg : y → x.
We can take the morphism lyx0g

−1 : x0 → y (it is a morphism since x0 ≤ y) and composing we
get (lxygg)(l

y
x0g

−1) = lxx01, so lxx01 ∈ S. Furthermore, for any g′ ∈ G, we have that (lxx01)(l
x0
x0g

′) =

lxx0g
′ ∈ S. These morphisms are independent from the sieve S, so the set Smin

x = {lxx0g | g ∈ G} is
contained in any sieve on x and it is itself a sieve, therefore it is minimal among the non-empty
sieves on x (and unique).

If we want to characterise it as a subfunctor of Smax
x = HomP⋊G(−, x), we can write it as:

Smin
x (y) =

HomP⋊G(x0, x), ify = x0

∅ otherwise.

It is interesting to see that HomP⋊G(x0, x) is isomorphic with G as a G-set.
From now on, we denote PG the site (P⋊G,Jat), if P has an initial object. TG = (T (G),Jat)

is a special case of PG.

Corollary 4.2.7. Suppose a group G and a G-poset P with an initial object. We also have
a covariant functor ρ : P ⋊ G → C, which is identity on objects and surjective on morphisms.
Then C satisfies the Ore condition, thus it can be equipped with the atomic topology. Moreover,
∀x ∈ Ob(C), there is a unique minimal non-empty sieve.

Proof. Since ρ is identity on objects, we identify the objects of P⋊G and C. Again, we take two
morphisms y → x and z → x in C and since ρ is surjective on morphisms, we can take one of
their preimages in P ⋊ G. The morphisms taken can complete a commutative square from the
previous Lemma, so taking the image of the square along ρ, we get a commutative square for
the two initial morphisms in C. Hence, C satisfies the Ore condition.

We consider a non-empty sieve S on the object x of C. We have that ρ−1(S) = {u ∈
Mor(P⋊G) | ρ(a) ∈ S}, which is a non-empty sieve (ρ is surjective on morphisms). Also, if S′ is a
non-empty sieve on x in the category P⋊G, then ρ(S′) is a sieve on x in the category C. Taking the
unique minimal sieve Smin

x from the previous lemma, we get that Smin
x ⊂ ρ−1(S)⇒ ρ(Smin

x ) ⊂ S
for any non-empty sieve S. Therefore, the sieve ρ(Smin

x ) is minimal among non-empty sieves on
x ∈ Ob(C), and unique.
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Again, if we want to characterise it as a subfunctor of Smax
x = HomC(−, x), we can write it

as:

Smin
x (y) =

HomC(x0, x), ify = x0

∅ otherwise.

Proposition 4.2.8. Suppose a group G and a G-poset P with an initial object x0. We also have
the category extension K i−→ P ⋊ G

ρ−→ C. If we give the atomic topology on P ⋊ G and C, then
the sheafification of F ∈ PSh(C) is the fixed-point sheaf FF (x0) ∈ Sh(C), which is the sheaf with
FF (x0)(x) = F (x0)

K(x). As a result, we have that all the sheaves on C are of the form FM and
all the sheaves on PG are the constant sheaves κM , with M being any G-set.

Proof. We consider a presheaf F on C and we apply the sheafification procedure to it, constructing
F † ∈ PSh(C), where

F †(x) = lim−→
S∈J (x)

Nat(S, F ), ∀x ∈ Ob(C).

According to the process, if F † is not a sheaf, then we repeat, getting F# = (F †)† ∈ Sh(C).
However, by Corollary 4.2.7, for every x ∈ Ob(C), there is always a unique minimal non-empty

sieve Smin
x ∈ J (x). Since there is a morphism from Smin

x to any other sieve S, from naturality
we have that all the morphisms Nat(S, F ) → Nat(Smin

x , F ) form a cone and Nat(Smin
x , F ) is an

element of the cone, thus concluding that F †(x) ∼= Nat(Smin
x , F ).

Moreover, since the image under ρ◦i of any morphism in K(x) is 1x, we get that Mor(K(x)) =
kerρ, where ρ is considered as a function between the morphisms groups. ρ is also surjective,
hence we get

HomC(x0, x) ∼= HomP⋊G(x0, x)/K(x),

which can be considered as the G-set G/K(x).
Since Smin

x is defined only on x0 and as a sieve it returns HomC(x0, x), Nat(Smin
x , F ) ∼=

HomG(G/K(x), F (x0)) ∼= F (x0)
K(x). Concluding, we get F †(x) ∼= F (x0)

K(x), ∀x ∈ Ob(C), so
F † ∼= FF (x0). FF (x0) is already a sheaf, so it is indeed the sheafification of F .

Furthermore, F (x0) is always a G-set. Conversely, if M is a G-set, we can define a presheaf
FM with F (x0) =M and F (x) = ∅ otherwise, which has sheafification FM .

In the case of P ⋊ G, we identify it with the category C. This means that ρ is identity in
morphisms, so K(x) = kerρ = 1 for all x ∈ Ob(C). Therefore, for any presheaf F on P ⋊G, we
have the sheafification F †(x) ∼= F (x0)

K(x) = F (x0), thus the constant sheaf κF (x0).

Proposition 4.2.9. Suppose a group G and a G-poset P with an initial object. Let π : P⋊G→ G

be the natural functor to G and ρ : P ⋊ G → C be the second functor on a category extension
(identity on objects and surjective on morphisms). Then, giving P ⋊ G, G and C the atomic
topologies, we have:

1. π is continuous and cocontinuous

2. ρ is cocontinuous.
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Proof. π is continuous: The image of Smin
x ∈ J (x) under π is the group G, which means all the

automorphisms on •. This is the only covering sieve on •. Since Smin
x is contained in any sieve

on x, π(Sx) is a covering sieve on •, for any Sx ∈ J (x). Also, the category •/π has objects
(t, x) with t being a morphism in G, • → π(x) = •, so t is identified with some g ∈ G. If we
have a morphism in •/π, u : (g, x) → (g′, x′), then there is a morphism u : x → x′ in P ⋊ G,
such that g′ = π(u) ◦ g ⇒ π(u) = g′g−1. As a result, u = lx

′

xg′g−1g
′g−1 : x→ x′. It is easy to see

that all the objects of the form (g, x0), for any g ∈ G and for x0 being the initial element of P,
are isomorphic with each other and initial. Therefore, (•/π)op has a terminal object, thus π is
continuous.

π is cocontinuous: For any x ∈ Ob(P ⋊G), π(x) = • and there is only one sieve on •, S, the
sieve of all automorphisms. If we take the minimal sieve Smin

x on x, then its image under π is
exactly the sieve S.

ρ is cocontinuous: As we have shown in Corollary 4.2.7, for any sieve S on x ∈ Ob(C),
ρ(Smin

x ) ⊂ S and from the atomic topology Smin
x ∈ J (x) in P ⋊G.

The previous proposition shows how we use the atomic topology in order to have continuous
and cocontinuous functors. Now using their properties, we get the following result:

Corollary 4.2.10. Suppose a group G and a G-poset P with an initial object. The natural
functor π : P ⋊G→ G induces a morphism of topoi:

Ξ = (Ξ∗,Ξ∗) : Sh(G)→ Sh(PG),

and another morphism of topoi:

Π = (Π∗,Π∗) : Sh(PG)→ Sh(G).

If we have a category extension K i−→ P ⋊ G
ρ−→ C, then the functor ρ induces a morphism of

topoi:
Θ = (Θ∗,Θ∗) : Sh(PG)→ Sh(C).

Proof. We define Ξ∗ = Resπ : Sh(G) → Sh(PG) and Ξ∗ : Sh(PG) ↪→ PSh(P ⋊ G)
LKπ−−−→

PSh(G) = Sh(G), which form an adjoint pair. Also, the forgetful functor is left exact and
LKπ = LK#

π is exact, since LKπ
∼= lim−→P and P has an initial object x0, so Ξ∗ is left exact.

Therefore, Ξ is a morphism of topoi.
We note that the sheaf Ξ∗(M) is the sheaf that sends an object x of Sh(PG) to • through

π and afterwards to M (the sheaf on G). This is exactly the sheaf κM , so Ξ∗(M) = κM .
Furthermore, Ξ∗(κ) = κ(x0).

Due to the cocontinuity of π, we get that RKπF ∼= lim←−P F . Therefore, we put Π∗ = RKπ

and Π∗ = Resπ.
Similarly, from the cocontinuity of ρ we have that that RKρF ∈ Sh(C) for any F ∈ Sh(PG).

Then we can put Θ∗ = RKρ and Θ∗ = Res#ρ . The functor Θ∗ is exact.
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4.3 Equivalence of Topoi

Finally, we have the picture:

Sh(PG)

Sh(G) Sh(C)

Θ∗Π∗,Ξ∗

Π∗,Ξ∗ Θ∗

Theorem 4.3.1. Suppose a group G, a G-poset P with an initial object and a category extension
K −→ P ⋊G −→ C. We equip the categories G, P ⋊G and C with the atomic topology. Then, we
have:

1. The topoi Sh(G) and Sh(C) are both equivalent to Sh(PG), given by the topoi morphisms
Ξ and Θ respectively.

2. The topoi morphism Y = Θ ◦ Ξ: Sh(G)→ Sh(C) is an equivalence.

Proof. The sheaves of the topos Sh(G) are all the G-sets, while the sheaves on the site PG

are the constant sheaves κM and the sheaves on C are the fixed-point sheaves FM , where M is
running over all G-sets (Proposition 4.2.8). So, the morphisms Ξ and Θ are essentially surjective.

Also, using calculations, for a G-set M , we have

Θ∗ ◦Θ∗(FM ) = Θ∗(κM ) = FM ,

Θ∗ ◦Θ∗(κM ) = Θ∗(FM ) = κM ,

Ξ∗ ◦ Ξ∗(M) = Ξ∗(κM ) = κM (x0) =M,

Ξ∗ ◦ Ξ∗(κM ) = Ξ∗(M) = κM .

So, the units and counits of the adjunctions Θ and Ξ are isomorphisms, thus they are equivalences.
In the same way, we can show that Π is also an equivalence.

We set Y = (Y ∗, Y∗) : Sh(G)→ Sh(C), where Y∗ = RKρ ◦Resπ and Y ∗ = LKπ ◦Res#ρ . Since
Θ and Ξ are equivalences, so is Y .

We can use this theorem for the complete transformer category, so we set P = S(G) and we
can choose C = O(G).

Corollary 4.3.2. For a finite group G, if we equip the orbit category O(G) with the atomic
topology, making the site OG = (O(G),Jat), we have the equivalence:

Sh(OG) ∼= Set−G.

In a similar way, we can apply this result to different posets, so getting different orbit cate-
gories. Below are given some examples, which are presented in the referenced paper:

• Sp(G) (all the subgroups for a prime p), Tp(G) (p-transporter category) and Op(G) (p-orbit
category)
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• Sb(G) (all b-Brauer pairs for a p-block b of kG), Tb(G) (b-transporter category) and Ob(G)
(b-orbit category)

• P(G) (all local pointed groups over kGb), TLP (G) (p-local transporter category) and
OLP (G) (p-local orbit category)

Using Theorem 4.3.1, we can have not only the equivalence of the category of G-Sets with
Sh(OG), but also with Sh(OpG),Sh(TpG),Sh(ObG), etc.
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