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Abstract

Random number generation is one of the most important and hardest computational tasks be-
cause of its various applications, especially in cryptography. Nowadays, classical cryptography
uses pseudorandom number generators, which cannot extend randomness and are only based on
computational assumptions. Quantum mechanics has perfect randomness in its postulates, so
they can provide a way to construct cryptographically secure protocols that can expand ran-
domness and certify that it is generated by quantum phenomena. In order to achieve this, we
can use a type of games, called nonlocal games, in which the players do not communicate and if
they can use quantum properties, they have a greater probability to win than using any classical
strategy. Checking the winning probability can verify the use of a quantum mechanical system
and as a result, ensure that the output is truly random. We can use this simple idea to make pro-
tocols that expand an initial random seed exponentially and even use it for infinite randomness
generation.

In this thesis, we will present the basics of quantum information theory and nonlocal games,
so we can use them to build a protocol for exponential randomness expansion and after that
a protocol for infinite randomness expansion. These topics have been studied in the literature
before. The main contribution of this thesis is constructing a protocol for infinite randomness
expansion that uses only 3 quantum devices instead of 4, which was the lowest bound known for
this task until now.
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Chapter 1

Introduction

1.1 Quantum Cryptography

Quantum mechanics is a fundamental theory in physics that was discovered in the 20th century,
but has found plenty of applications since then. In the 1970s, some attempts were made to
connect quantum mechanics with information theory, which is a theory that was relatively new
then, developed by Shannon in the 1940s [1]. In the 1980s, several physicists, like Paul Benioff
[2], Richard Feynman [3] and Yuri Manin [4] suggested that we can use the properties of quantum
mechanics for computational tasks, such as simulations of quantum systems. However, the main
result that made quantum computing look promising for the future of computing in general, is
Shor’s algorithm, which was developed by Peter Shor in 1994 [5]. This algorithm makes possible
to find the prime factors of an integer in polynomial time, while every known classical algorithm
requires at least sub-exponential time, which is not practical for real-world applications. Thus,
this breakthrough suggested that one of the most used cryptosystems, the RSA would no longer
be secure, if quantum computers can be constructed.

In parallel with the development of quantum computing, it was realised that an alternative
to these cryptosystems, which could be broken by Shor’s algorithms, can use the same properties
of quantum mechanics, so the field of quantum cryptography was invented. This idea was first
proposed in the 1970s by Stephen Wiesner [6], who introduced the concept of quantum money and
quantum conjugate coding. Quantum conjugate coding referred to storing messages by encoding
them in two "conjugate basis", so that only one of them can be decoded due to Heisenberg’s
Uncertainty Principle. This could be applied to make unforgeable bank notes, which is called
quantum money. However, the main breakthrough came when in 1984 Charles H. Bennett and
Gilles Brassard [7] used the idea of conjugate coding in transmitting information, which resulted
in the first protocol for quantum key distribution, which is called the BB84 protocol. A further
improvement in the security of this protocol was achieved when Artur Ekert proposed in 1991
[8] to use entanglement and Bell’s inequalities.

Entanglement is a quantum phenomenon that proved to be essential for quantum cryptog-
raphy, since it can produce correlations that cannot be described by classical systems. These
correlations make it possible for a user that communicates with unreliable black-box servers (the
user has no information about the system) to check if these servers uses quantum properties
or not. This is called self-testing. The term was first introduced by Mayers and Yao [9], who
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CHAPTER 1. INTRODUCTION 2

used self-testing to reduce some assumptions needed for quantum cryptography, thus inventing
device-independent quantum cryptography. Their idea is to make protocols that do not rely on
trusting that the devices we use are honest about using quantum properties.

This has also potential in a real-life scenario; quantum computers, when they can be fully
functional, will only do some very specific tasks, so any user will not have their own quantum
computer, but would be able to communicate with a central server that provides the computa-
tional power of quantum computers. However, the user cannot be sure that this server is trustful,
so there must be a way that the user can verify that the server is honest. Apart from verification,
device-independent protocols are made for quantum key distribution, randomness amplification
and randomness expansion.

Figure 1.1: The setup of the protocols described in the thesis: There is a user that
communicates with a server, which consists of different quantum devices that do not

communicate, but they can share entanglement.

1.2 Randomness Generation

Random number generation is a process that generates a sequence of numbers that does not have
some pattern and there is no way to be predicted with high probability. It is usually accomplished
by devices or algorithms called random number generators (RNG) and has various applications
in computer simulations, gambling, cryptography etc. Especially in cryptography, the use of
randomness is crucial, because it ensures the security of our computational and communications
infrastructure. Considering all the devices that are connected on the Internet right now always
require more randomness to communicate, we can see that the amount of randomness needed
is astronomical. On top of that, high quality randomness is essential for some cryptographic
applications, like sharing a secret key.
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We have two main methods to make RNGs: physical and computational. Physical RNGs,
also called Hardware RNGs, generate randomness by means of a physical process, often based on
microscopic phenomena, such as thermal noise. The computational method does not use some
device, but some algorithm that uses a random input to expand it and generate a random output.
However, since an algorithm does only deterministic operations, using the same input, which is
known as seed, will give the same outcome. That is why we call these RNGs, Pseudorandom
Number Generators (PRNGs).

There are some drawbacks in using PRNGs. The entropy of the output cannot be greater
than the entropy of the input, so we cannot expand the randomness we already have. Also, the
security of PRNGs is based on computational assumptions, such as the hardness of solving some
problem, which we do not know definitely that it is true.

Moreover, there have been some attempts to certify randomness by only observing the se-
quence of the numbers. Many statistical tests have been invented and in the 1960s, Kolmogorov
developed Kolmogorov complexity [10], which is an indicator of randomness contained in a cer-
tain string. However, there is a flaw in these tests, because some RNG can deterministically
produce some string that passes the tests. So, in order to have true randomness we need an
inherently random process.

Using the effects of quantum mechanics, we can design protocols for quantum RNGs that
overcome all these problems. Since quantum mechanics is a theory with perfect randomness as
one of its postulates, we can use it to produce and expand randomness, even using deterministic
operations on the quantum system. We do not need to count on computational assumptions,
but only on the correctness of quantum mechanics and using its properties, like Bell inequalities
and self-testing, we can verify the random string without statistical tests, which are unreliable.

1.3 Motivation

In the literature, the study of certified randomness expansion protocols using quantum mechanics
started in 2006, when Colbeck [11] suggested to use the violation of Bell’s inequalities with 2
quantum devices to check if a system generates randomness. Classical security for these kind of
protocols was proved in Pironio et al. [12], Fehr et al. [13], and Pironio and Massar [14], as well
as in Coudron et al [15]. In 2012, Vazirani and Vidick [16] provided a protocol for exponential
randomness expansion, which was secure against quantum adversaries, as well. In 2016, Coudron
and Yuen using the Vazirani-Vidick protocol as subprotocol made the first adaptive protocol for
infinite randomness expansion using 8 quantum devices [17]. In the same year, there were two
other papers, one from Miller and Shi [18], who constructed a robust protocol for exponential
expansion, improving the work of Vazirani and Vidick, and one from Chung, Shi and Wu [19],
who proved the security for composition of protocols. These two results combined provided a
procedure for infinite randomness expansion with 4 quantum devices. The goal of this thesis is
to improve this result, so as to use 3 quantum devices for infinite randomness. For constructing
such a protocol, we used the results from Chung, Shi and Wu [19], as well as a breakthrough
result from Metger, Fawzi, Sutter and Renner [20], as building blocks of the proof.
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1.4 Structure of this thesis

Chapter 2 We present the main concepts of quantum information theory that are essential for
quantum computing and cryptography.

Chapter 3 This is an introduction to nonlocal games, a class of games, which are used in the
proof of Bell’s inequality and are a way to separate quantum from classical correlations.
These games are the base for constructiong randomness expansion protocols.

Chapter 4 In this chapter, we present the main features used for randomness expansion proto-
col, a simple protocol for exponential expansion with proof of classical security and some
upper bounds of non-adaptive protocols.

Chapter 5 This is the main contribution of this thesis. We present the Equivalence Lemma
and Generalised Entropy Accumulation theorem and combine them to construct a protocol
for infinite randomness expansion with 3 quantum devices.



Chapter 2

Quantum Information Basics

2.1 Qubit

To start with, we have to define the basic unit of quantum information, the qubit [21]. A qubit
is analogous to a bit in classical information theory. Just as a bit can take two values, 0 and
1, so a qubit is a quantum-mechanical system which can be in two different states. However, in
quantum mechanics these two states can co-exist in some combination of these two states, which
is called superposition.

We can formulate this mathematically. Suppose that the two basic states are |0⟩ and |1⟩,
which are some unit vectors orthogonal to each other on a vector space with dimension 2, consider
C2. These two states obviously correspond to classical 0 and 1. The notation |·⟩ is called the
"Dirac notation" and it is used to denote any quantum state. So, all the (linear) combinations
of the two basic states are of the form

|ψ⟩ = a |0⟩+ b |1⟩ , a, b ∈ C

In order this to be a valid state in superposition, according to the laws of quantum mechanics, it
must hold that |a|2 + |b|2 = 1. That means that the state |ψ⟩ is also a unit vector in the vector
space C2. Thus, the state space of a qubit is the set of all unit vectors in C2, which we denote
as S(C⊭).

Since the vector space C2 is finite, we can consider that |0⟩ and |1⟩ constitute the standard
basis, so

|0⟩ =

(
1

0

)
|1⟩ =

(
0

1

)
and every state is of the form

|ψ⟩ =

(
a

b

)
a, b ∈ C, |a|2 + |b|2 = 1

So, if a qubit can be in infinitely many states, why did we say that it is a two state quantum
system? In fact, we can only observe two different states of the system using a measurement
on the state |ψ⟩: the state |0⟩ with probability |a|2 and the state |1⟩ with probability |b|2. For
example if we measure the state

1√
2
|0⟩+ 1√

2
|1⟩

5
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we can get |0⟩ or |1⟩ with probability (1/
√
2)2 = 1/2.

After the measurement the state stays the same with the one we found with the measurement,
so the initial state has lost its superposition. Then, we say that the state has collapsed to the
specific outcome state.

However, we can measure a qubit not only using the vectors of the standard basis, but also
any other orthonormal basis of the vector space C2. For instance, we can define a new basis as

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ =


1√
2
1√
2

 |−⟩ = 1√
2
|0⟩ − 1√

2
|1⟩ =


1√
2

− 1√
2


We will call the basis (|+⟩ , |−⟩) the Hadamard basis.

Figure 2.1: Standard basis (|0⟩ , |1⟩) and Hadamard basis (|+⟩ , |−⟩)

When we measured in the standard basis, the probability of some outcome was the squared
magnitude of the projection on the vector corresponding to this outcome. Hence we can generalise
this for any basis using the inner product:

Pr(|ψ⟩ outcomes |+⟩) = |⟨|ψ⟩ , |+⟩⟩|2 = | |ψ⟩∗ |+⟩ |2 = | ⟨ψ|+⟩ |2

where ⟨ψ| = |ψ⟩∗ = (a b) is the conjugate transpose of |ψ⟩. The post-measurement state will
again be the outcome state; this does not depend on the basis we use for the measurement.

It is clear that the procedure of measurement is probabilistic in nature, so it generates
randomness. So, we can use this procedure to generate randomness for some applications, as we
will see later.

2.2 Multiple qubits

Now let us suppose that we have two qubits (which are defined in two different vector spaces
C2). If we want to describe them as a unified system, we have to take the tensor product of
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these two spaces, so as to keep the linear properties induced by quantum mechanics. Hence, we
can define a two-qubit system in the space C2 ⊗ C2 and the set of all two-qubit states as

S(C2 ⊗ C2) = {|ψ⟩ ∈ C2 ⊗ C2 : ∥|ψ⟩∥22 = 1}

where ∥·∥2 is the Euclidean norm.
The tensor product with vectors is defined as

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ =

(
a

b

)
⊗

(
c

d

)
=


ac

ad

bc

bd

 = ac |00⟩+ ad |01⟩+ bc |10⟩+ bd |11⟩

and we have |ac|2 + |ad|2 + |bc|2 + |bd|2 = (|a|2 + |b|2)(|c|2 + |d|2) = 1.
In these two-qubit systems, we can make measurements like in the case of qubit, but with 4

different outcomes, since any basis of C2 ⊗ C2 has cardinality 4. So, for example measuring

|ψ⟩ = a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩

in the standard basis could get |00⟩ with probability |a|2 and after that the state would collapse
to |00⟩. The same holds respectively for the other basis states. However, it is possible to measure
only one of the qubits. Measuring the first qubit would get |0⟩ with probability |a|2 + |b|2 and
|1⟩ with probability |c|2 + |d|2. In the first case, the first qubit collapses to |0⟩, so the possible
states are |00⟩ and |01⟩. Thus, to find the post-measurement state we normalise the two possible
states like this: ∣∣ψ′〉 = a |00⟩+ b |01⟩

|a|2 + |b|2

We can generalise the definition of a two-qubit system to an n-qubit system, which is defined
on the space (C2)⊗n. The measurement of an n-qubit system is defined similarly to that of the
qubit with the inner product and the post-measurement state, as we have seen above. Obviously,
every basis of (C2)⊗n has cardinality 2n, so by measuring an n-qubit system we can get 2n

different outcomes.

2.2.1 Entanglement

The properties of the tensor product allow for another remarkable phenomenon in quantum
mechanics, apart from superposition, which is called entanglement. Since any state in C2 ⊗ C2

with Euclidean norm equal to 1 is possible, we can consider the state:

|ψ⟩ =



1√
2
0

0
1√
2

 =
|00⟩+ |11⟩√

2

This state has the property that it cannot be written as the tensor product of two single qubits
(∄ |ψ1⟩ , |ψ2⟩ ∈ C2 such that |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩). If they existed, then assuming |ψ1⟩ = (a b)T

and |ψ2⟩ = (c d)T , we must have ac = 1/
√
2, ad = 0, bc = 0, bd = 1/

√
2, which is impossible.
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We will call all those states that cannot be decomposed to the tensor product of single qubit
states, entangled. Entanglement can create some correlations between systems, which are not
possible classically. We will study this in the next chapter.

2.3 Operators

2.3.1 Unitary evolution

After we have defined how information is represented in quantum systems, we need to determine
the ways that these states change. So, we need some operation that maps one state (which is a
vector) to another state. These maps from a vector space to another vector space are (linear)
operators. In the case of finite vector spaces, which we need here, the operators are matrices.
That means that an operator O : Cn → Cm can be represented by an m×n matrix. We will see
that the use of operators in quantum information is crucial.

The operators used for the evolution of a system must preserve the norm of the vectors,
because the state vectors are all unit. These matrices, in the case of n× n operators, are called
unitary matrices. A square matrix U is a unitary matrix if its conjugate transpose U∗ is also its
inverse, which means UU∗ = U∗U = I.

So, all the actions on a quantum state can be represented by a unitary matrix and reversely
any unitary matrix represents an action on a state. If we have |ψ⟩ as the initial state and |ψ′⟩
as the final state (with the same number of qubits), then there is a unitary matrix U such that
|ψ′⟩ = U |ψ⟩.

In quantum computation, unitary matrices for small number of qubits are also called gates,
because their action is analogous to logical gates in classical computation. The most famous gate
is the Hadamard gate for one qubit:

H =
1√
2

[
1 1

1 −1

]
which maps |0⟩ to |+⟩, |1⟩ to |−⟩ and vice versa.

2.3.2 Measurements

Instead of measuring with different basis, we can also represent measurement using a collection
of measurement operators {Mm} where m is the index of the different outcomes. The rule we
define by measuring with Mm is

p(m) = Pr(|ψ⟩ outcomes m) = ∥Mm |ψ⟩∥22 = ⟨Mm |ψ⟩ ,Mm |ψ⟩⟩ = ⟨ψ|M∗
mMm |ψ⟩

and the post-measurement state is
Mm |ψ⟩

⟨ψ|M∗
mMm |ψ⟩

Also, for completeness with probabilities, we have

∀ |ψ⟩ 1 =
∑
m

p(m) =
∑
m

⟨ψ|M∗
mMm |ψ⟩ ⇐⇒

∑
m

M∗
mMm = I

If we define the operator E = M∗M , it is easy to see that E is a positive definite operator.
That is why we call this type of measurement POVM (Positive Operator-Valued Measurement).
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2.3.3 Projective Measurements and Observables

Measuring with a basis {|a1⟩ , |a2⟩ , ..., |an⟩} is equivalent with measuring with the operators
P1 = |a1⟩ ⟨a1| , P2 = |a2⟩ ⟨a2| and so on. These operators are Hermitian (equal with their
conjugate transpose), because P ∗

i = (|ai⟩ ⟨ai|)∗ = ⟨ai|∗ |ai⟩∗ = |ai⟩ ⟨ai| = Pi. Hence

⟨ψ|P ∗
i Pi |ψ⟩ = ⟨ψ|ai⟩ ⟨ai|ai⟩ ⟨ai|ψ⟩ = (⟨ai|ψ⟩)2

since |ai⟩ is a unit vector (⟨ai|ai⟩ = 1). So we have proved the equivalence. We also see that
P 2
i = Pi and PiPj = 0. The operators with these properties are also called orthogonal projections.

Using orthogonal projections, we can define a more special kind of measurement than POVM,
called projective measurement. This measurement is made by a family of orthogonal projections
{Pi} and is described by another operator, which is called observable.

An observable represents a physical quantity that can be measured in a quantum system,
like energy, momentum, spin. It is associated with a Hermitian matrix A. The interpretation
of this matrix is that its eigenvalues are the different outcomes of measuring this quantity and
the eigenvectors are the states that the system can collapse to, if the corresponding eigenvalue is
measured. Thus, if A has eigenvalues λ1, λ2, ..., λn (which are all real, because A is Hermitian)
and eigenvectors |a1⟩ , |a2⟩ , ..., |an⟩, we can write A as

A =

n∑
i=1

λiPi

where Pi = |ai⟩ ⟨ai| is the projection on the eigenspace of |ai⟩. This is called the spectral
decomposition.

Using the above relation, we can get

⟨ψ|A |ψ⟩ =
n∑

i=1

λi ⟨ψ|Pi |ψ⟩ =
n∑

i=1

p(i)λi

which is the expected value of the outcome.

2.3.4 Pauli Matrices

Pauli matrices are 4 qubit observables that have some nice properties and are fundmental for
the study of quantum information theory. They are defined by:

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]

Below there are some useful properties:

1. They are unitary, Hermitian and their square equals the identity matrix. So, for all A ∈
{I,X, Y, Z},

• AA∗ = I

• A = A∗

• A2 = I
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• λ(A) = ±1

2. X,Y, Z anti-commute pairwise

XY = −Y X Y Z = −ZY ZX = −XZ

3. Y = iXZ, X = iZY, Z = iY X

4. Each one of X,Y, Z corresponds to a projective measurement:

• The observable Z is equivalent to measuring in the standard basis, because it is a

projection onto |0⟩ =

(
1

0

)
with eigenvalue 1 and onto |1⟩ =

(
0

1

)
with eigenvalue −1.

• The observable X is equivalent to measuring in the Hadamard basis, because it is a

projection onto |+⟩ =
1√
2

(
1

1

)
with eigenvalue 1 and onto |−⟩ =

1√
2

(
1

−1

)
with

eigenvalue −1.

• The observable Y is a projection onto
1√
2

(
1

i

)
with eigenvalue 1 and onto

1√
2

(
1

−i

)
with eigenvalue −1.

2.4 Density Matrix

Thus far, we have seen how the quantum states can be represented as vectors and what actions we
can do on these vectors. However, there is another equivalent representation for quantum states,
which is often more helpful; it is the density matrix. Suppose that the state of the quantum
system is not completely known, but can be in one of a number of states |ψi⟩ with probability
pi (i = 1, 2, ..., k). Then, we say that the system is in a mixed state {pi, |ψi⟩}. We can convert
this mixed state into a matrix (or operator) which is called the density matrix (operator) and is
defined by

ρ =
k∑

i=1

pi |ψi⟩ ⟨ψi|

It can be proved that all the properties of vector states also hold for the density matrices.
We will see how we can reformulate them.

At first, if we have a quantum state and we want it to change using a unitary matrix U , then
a state |ψ⟩ will become U |ψ⟩. Analogously, we can have

ρ =

k∑
i=1

pi |ψi⟩ ⟨ψi|
U−→

k∑
i=1

piU |ψi⟩ ⟨ψi|U∗ = UρU∗

We can generalise the operation ρ→ UρU∗ with maps from the space of density matrices with
dimension n to the space of density matrices with dimension m. We call these maps quantum
channels and they are the most general way to represent evolution of quantum systems. Quantum
channels must preserve the properties of density matrices. That is why they must be completely
positive and trace preserving, which is denoted as CPTP (A,B), where A is the input quantum
system and B the output quantum system.
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We can also reformulate measurements. If we want to perform a measurement with mea-
surement operators Mm, then p(m)i = ⟨ψi|M∗

mMm |ψi⟩ = Tr(M∗
mMm |ψ1⟩ ⟨ψi|). To have

the last equality, consider an orthonormal basis to the vector space that |ψ⟩ belongs, which
is |0⟩ , |1⟩ , ..., |n⟩ with some i such that |i⟩ = |ψ⟩. Then

Tr(A |ψ⟩ ⟨ψ|) =
∑
i

⟨i|A |ψ⟩ ⟨ψ|i⟩ = ⟨ψ|A |ψ⟩

Therefore, for the mixed state {pi, |ψi⟩}, we have

p(m) =
k∑

i=1

pip(m|i) =
k∑

i=1

pip(m)i =
k∑

i=1

piTr(M
∗
mMm |ψ1⟩ ⟨ψi|) = Tr(M∗

mMmρ)

Similarly, we see that the post-measurement state, if we havem as output of the measurement,
will be

ρm =
MmρM

∗
m

Tr(M∗
mMmρ)

We can identify some properties of the density matrices.

1. It is easy to see that ρ is a square matrix, since |ψ⟩ ⟨ψ| is always square.

2. ρ is Hermitian, because

ρ∗ =

(
k∑

i=1

pi |ψi⟩ ⟨ψi|

)∗

=
k∑

i=1

pi(|ψi⟩ ⟨ψi|)∗ =
k∑

i=1

pi |ψi⟩ ⟨ψi| = ρ

3. Tr(ρ) = 1. We can show that Tr(|ψ⟩ ⟨ψ|) = 1 easily by taking the trace in respect to a
basis which includes |ψ⟩. So

Tr(ρ) = Tr

(
k∑

i=1

pi |ψi⟩ ⟨ψi|

)
=

k∑
i=1

piTr(|ψi⟩ ⟨ψi|) =
k∑

i=1

pi = 1

4. All the eigenvalues of a density matrix are non-negative or equivalently ρ is a positive-
semidefinite matrix. Suppose that for the eigenvalue λ, we have ρ |v⟩ = λ |v⟩ ⇐⇒ λ =

⟨v| ρ |v⟩. Then

λ =
k∑

i=1

pi ⟨v|ψi⟩ ⟨ψi|v⟩ =
k∑

i=1

pi(⟨v|ψi⟩)2 ≥ 0

5. We can combine different states with the tensor product. So, if we have the different
quantum states ρ1, ρ2, ..., ρn, then their common state is ρ = ρ1 ⊗ ρ2 ⊗ ...⊗ ρn.

6. We can write the density matrix for a qubit (2× 2) as a linear combination of Paulis:

ρ =
1

2
(I + rxX + ryY + rzZ)

where rx, ry, rz are real numbers and are the coordinates of a point in the unit ball. We can
generalise this and write any density matrix of a quantum system as a linear combination
of tensor combinations of Paulis.
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Conversely, suppose that ρ is a positive-semidefinite square matrix with trace 1. Then, all
its eigenvalues are in [0, 1] and by the spectral theorem

ρ =
∑
i

λi |i⟩ ⟨i|

which is the mixed state {λi, |i⟩}, so ρ is a density matrix.
Finally, if we have a composite quantum system, we can use the density matrix to find the

state of only some of the subsystems. This is called the reduced state operator. Suppose we have
the systems A and B and they are in the state ρAB. Then the reduced state operator for system
A is

ρA = TrB(ρ
AB)

TrB is known as the partial trace over B and is defined by

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) = |a1⟩ ⟨a2|Tr(|b1⟩ ⟨b2|) = ⟨b2|b1⟩ |a1⟩ ⟨a2|

where |a1⟩ , |a2⟩ are possible states of the subsystem A and |b1⟩ , |b2⟩ are possible states of the
subsystem B. We can generalise this definition for any density matrix by using linearity, like in
the common trace operator.



Chapter 3

Nonlocal Games

3.1 EPR Paradox and Nonlocal Games

In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered
Complete?", the physicists Albert Einstein, Boris Podolsky and Nathan Rosen [22] proposed a
thought experiment, with which they argued that quantum mechanics is an incomplete theory.
Specifically, they argued there are some phenomena that cannot be predicted with quantum
mechanics and there must be a theory that can contain them, too.

The thought experiment they described is as follows:
1. There are two participants, which we will call Alice and Bob, and they share a pair of

qubits in an entangled state |ψ⟩ = 1√
2
(|00⟩+ |11⟩). This is called an EPR pair. We consider that

the two participants cannot communicate with each other during the experiment. For example,
we can say that they are at planets light years away, so the communication is impossible during
the experiment.

2. Alice can measure her qubit in the standard or Hadamard basis. If she chooses the
standard basis, then she gets |0⟩ or |1⟩ with equal probability, and the overall state collapses to
|00⟩ or |11⟩, respectively. In a similar manner, if she chooses the Hadamard basis, then she gets
|+⟩ or |−⟩ with equal probability, and the overall state collapses to |++⟩ or |−−⟩, respectively.

3. As a result, if Bob chooses to measure the state on the same basis with Alice, he will get
the same outcome as her.

This thought experiment presented according to the authors of the paper a paradox, be-
cause the action on Alice’s qubit could affect Bob’s qubit. In other words, Bob could predict
Alice’s outcome, even if he was light years away in distance, which meant that information was
transmitted faster than light and this is forbidden by the theory of relativity.

The EPR paradox showed that quantum mechanics is a nonlocal theory and suggested that
this incompleteness can be solved by a hidden variable theory. However, in 1964, John Stewart
Bell showed that there is no local theory, even with hidden variables, that can describe some
correlations that arise from quantum mechanics [23], [24]. In fact, Bell’s theorem states that the
set of quantum correlations is strictly greater than the set of classical correlations (that arise
from classical physics).

A simple way to prove Bell’s theorem is by proposing a type of games which are called
nonlocal games. In this type of games, there is a referee and several players, who can share

13
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entanglement and cannot communicate with each other (this is where nonlocality comes from).
The referee sends randomly chosen questions to each players from a set of possible questions and
each player can answer from a set of possible answers. At the end the referee uses a verification
function, which has as parameters the questions they sent and the answers they received, and
decides if they will accept, which means that the players win, or reject, which means that they
lose.

The players choose some strategy before the game begins. A deterministic strategy means
that for some specific question, the player responds with a specific answer. Formally, we can
represent this type of strategies with a family of functions {fi(xi)} with i an index over the
players, xi the question on player i and fi a function from the set of possible questions to the set
of possible answers. Each function has only the input of the player as parameter because of the no
communication condition. We can extend the deterministic strategies with the probabilistic ones,
where the players can use randomness for their answers. We can suppose that the randomness is
shared, because if it is private then the players’ functions can use only some specific parts of the
random string. So, in probabilistic strategies, we have the family of functions {fi(xi, r)}, where
r is a shared random string. These strategies are classical. The quantum strategy is represented
with a shared state |ψ⟩ and for each player a set of observables Oi,xi . That means that a player
depending on their input question xi chooses to measure their own part of the shared state |ψ⟩
with the corresponding observable. Each eigenvalue (or equivalently outcome) of the observable
corresponds to a possible answer.

In this way, we can define two values, the classical value of the game, which is the maximum
winning probability for the players if they can only use classical strategies, and the quantum
value, which is the maximum winning probability for the players if they use a quantum strategy.
The former is denoted as ωc(G) and the latter ωq(G) for some game G. Bell’s theorem or Bell’s
inequality actually says that there exists a game G such that ωq(G) > ωc(G). Next, we will see
2 such games, the CHSH game and the Magic Square game.

3.2 The CHSH Game

One instance of this type of games is called the CHSH game. It is named after John Clauser,
Michael Horne, Abner Shimony and Richard Holt [25], who described it in a paper published in
1969. The game is described below:

1. The referee selects uniformly random bits x, y ∈ {0, 1} and sends x to Alice and y to Bob.
2. Alice and Bob using a strategy that they have agreed before the game, answer to the

referee by sending bits a and b respectively.
3. At the end, the referee accepts if and only if the XOR of a, b equals the AND of x, y

(a+ b ≡ xy (mod 2)).
We will see that if the players choose a classical strategy then the maximum winning prob-

ability 75% (ωc(CHSH) = 3
4). On the other hand, there is a quantum strategy that uses

entanglement and has winning probability around 85% (ωq(CHSH) = cos2(π8 )).
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Figure 3.1: In the CHSH game, the referee sends the bit x to Alice and the bit y to Bob, and
they must answer with a bit a and a bit b respectively without communicating. They win if

a+ b ≡ xy (mod 2).

3.2.1 Classical Strategies for the CHSH Game

We start with the case of deterministic strategies, which means that the outputs a, b of Alice and
Bob is a function of their respective inputs (since no communication is allowed). So, we have
a = f(x) and b = g(y). We have four possible cases of inputs:

• when x = 0 and y = 0, then the players win if and only if f(0) + g(0) ≡ 0 (mod 2).

• when x = 0 and y = 1, then the players win if and only if f(0) + g(1) ≡ 0 (mod 2).

• when x = 1 and y = 0, then the players win if and only if f(1) + g(0) ≡ 0 (mod 2).

• when x = 1 and y = 1, then the players win if and only if f(1) + g(1) ≡ 1 (mod 2).

If we sum all the above relations, we get 0 ≡ 1 (mod 2). So, we see that we cannot choose
functions f(x) and g(y) such that all four of these equations hold, but only at most three of
them. Thus, in this case the probability of winning is at most 75%.

However, Alice and Bob can use randomness in their strategy and this is still classical. So we
have the case of probabilistic strategies. In this case, we consider that the players have access
to a shared random variable r, which could be generated before the experiment. They can use
this variable to choose their respective outputs, so we have that a = f(x, r) and b = g(y, r).
The assumption of shared randomness also covers the case of private randomness, because the
functions of Alice and Bob can only use some independent parts of the bits of r.



CHAPTER 3. NONLOCAL GAMES 16

In this case the expected winning probability is

Pr[winning] =
∑
r∈R

Pr(r) · ω(f(x, r), g(y, r))

where ω(f(x, r), g(y, r)) denotes the probability of winning with the deterministic functions
f(x, r) and g(y, r).

As a result, any probabilistic strategy is a linear combination of deterministic strategies,
which means that the maximum winning probability is again 75%.

Thus, we conclude that for any classical strategy, the winning probability is at most 75%.

3.2.2 Quantum Strategy for the CHSH Game

Next, we will provide a quantum strategy with greater winning probability than the classical
one. To begin with, we consider that before playing the game, Alice and Bob have shared the
two qubits of an EPR pair. They have also agreed to measure their qubit with the following
observables (denoted A0, A1, B0, B1):

Alice will measure in the standard basis, if she receives x = 0, which means A0 = Z, and in
the Hadamard basis, if she receives x = 1, which means A1 = X.

Bob will measure in different basis. If he receives y = 0, we consider a rotation of π/8 to the
standard basis, so the new basis vectors are

cos
(π
8

)
|0⟩+ sin

(π
8

)
|1⟩ , cos

(
5π

8

)
|0⟩+ sin

(
5π

8

)
|1⟩

The corresponding observable is B0 =
1√
2
(X + Z).

If he receives y = 1, then we have a rotation of −π/8 to the standard basis, so as the new
basis vectors to be

cos
(
−π
8

)
|0⟩+ sin

(
−π
8

)
|1⟩ , cos

(
3π

8

)
|0⟩+ sin

(
3π

8

)
|1⟩

The corresponding observable is B0 =
1√
2
(Z −X).

Figure 3.2: The different basis used for the quantum strategy of the CHSH game: (a) is for
Alice and (b) is for Bob

(Note: When we measure in a binary basis with vectors |a⟩ , |b⟩, then these vectors are the
eigenvectors of the corresponding observable and the respective eigenvalues are 1 and −1. So,
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from the spectral theorem the observable O is

O = 1 · |a⟩ ⟨a| − 1 · |b⟩ ⟨b|

Using this relation, it is easy to compute A0, A1, B0, B1.)
Now let us see the outcomes of the two players. We will use the eigenvalues, so outcome 1

means that the output bit is 0 and outcome -1 means that the output bit is 1.

• If the inputs are x = y = 0, then Alice measures in the standard basis and gets |0⟩ or |1⟩
with probability 1/2. If Alice gets |0⟩ (outcome corresponding to the eigenvalue 1), then
Bob’s qubit collapses to |0⟩, as well. So measuring with B0, there is cos2(π8 ) probability
that he also gets outcome 1 (cos2(π8 ) is the squared inner product of |0⟩, which is the state
of the system, and cos

(
π
8

)
|0⟩ + sin

(
π
8

)
|1⟩, which is the eigenvector of 1). Respectively, if

Alice gets |1⟩ (eigenvalue -1), then Bob’s state is also |1⟩ and the probability of measuring
-1 with B0 is sin2(5π8 ) = cos2(π8 ). So, the overall success probability in this case is cos2(π8 ).

• If the inputs are x = 0, y = 1, then Alice measures in the standard basis here as well. If
she gets |0⟩, then Bob measuring |0⟩ with B1 gets outcome 1 with probability cos2(−π

8 ) =

cos2(π8 ). Similarly, they both get outcomes -1 with probability sin2(3π8 ) = cos2(π8 ). So,
again the success probability is cos2(π8 ).

• If the inputs are x = 1, y = 0, then Alice measures in Hadamard basis, so she gets |+⟩ or
|−⟩ with equal probability. If she gets |+⟩ (outcome 1), Bob’s state is also |+⟩, so measuring
with B0 the probability of outcome 1 is(

cos
(
π
8

)
√
2

+
sin
(
π
8

)
√
2

)2

=
1 + sin

(
π
4

)
2

=
1 + cos

(
π
4

)
2

= cos2
(π
8

)
Similarly, if Alice gets |−⟩ (outcome -1), then Bob’s state is also |−⟩ and measuring with
B0 gets outcome -1 with probability(

cos
(
5π
8

)
√
2

−
sin
(
5π
8

)
√
2

)2

=
1− sin

(
5π
4

)
2

=
1 + cos

(
π
4

)
2

= cos2
(π
8

)
So, the success probability is again cos2(π8 ).

• If the inputs are x = 1, y = 1, then Alice measures in Hadamard basis here as well.
However, in this case the two players must have opposite outcomes. In the case of Alice
getting |+⟩ (outcome 1), then the probability of Bob getting outcome -1 by measuring |+⟩

with B1 is
(

cos( 3π
8 )√
2

+
sin( 3π

8 )√
2

)2

= cos2(π8 ). Similarly, if Alice gets |−⟩ (outcome -1), then

Bob gets outcome 1 with probability
(

cos(−π
8 )√

2
− sin(−π

8 )√
2

)2

= cos2(π8 ).

To sum up, the success probability is cos2(π8 ) in each case, so it is also generally the success
probability for this strategy.
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3.2.3 Optimality of cos2(π
8
)

It may seem that the value cos
(
π
8

)2
= 1

2 + 1
2
√
2

is arbitrary, but it turns out that it is the
maximal value we can achieve with a quantum strategy (ωq(CHSH) = cos2(π8 )). This is called
the Tsirelson’s Inequality and it was proved in 1980 by Boris Tsirelson [26].

Proof. We can model a quantum strategy with the triple S = (|ψ⟩ , A,B), where |ψ⟩ ∈ Cd ⊗ Cd

is a quantum state shared between Alice and Bob with d being the dimension of their respective
system, and Ax, By are the observables on the two systems, depending on the inputs x, y. The
observables can have only two different outcomes, so their eigenvalues are 1 (for output 0) and
−1 (for output 1) and we can decompose them like Ax = Ax,0 − Ax,1 with Ax,0, Ax,1 being
orthogonal projectors with sum the identity matrix (Bx = Bx,0 −Bx,1 respectively).

Thus the probability of winning the CHSH game can be expressed as:

ωq(CHSH,S) =
∑
x,y

Pr(x, y)
∑

a,b:a⊕b=x∧y
Pr(a, b|x, y) = 1

4

∑
a,b,x,y:a⊕b=x∧y

⟨ψ|Ax,a ⊗By,b |ψ⟩

Using the relations for the observables, we can reduce ωq(CHSH,S) ≤ 1
2 + 1

2
√
2

to:

⟨ψ|A0 ⊗B0 +A1 ⊗B0 +A0 ⊗B1 −A1 ⊗B1 |ψ⟩ ≤ 2
√
2

To prove this, we define C0 =
B0+B1√

2
and C0 =

B0−B1√
2

, so we can rewrite this as:

⟨ψ|A0 ⊗ C0 +A1 ⊗ C1 |ψ⟩ ≤ 2

To simplify this relation, we can use the spectral norm of the operator T , which we denote
as ∥T∥ and is equal to the maximum singular value of T or equivalently the maximum value of
⟨ψ1|T |ψ2⟩ for unit vectors |ψ1⟩ , |ψ2⟩. So, ⟨ψ|T |ψ⟩ ≤ ∥T∥ and we need to prove that:

∥A0 ⊗ C0 +A1 ⊗ C1∥ ≤ 2

Then using ∥T∥2 ≤
∥∥T 2

∥∥, which is true for any operator, it suffices to prove:∥∥(A0 ⊗ C0 +A1 ⊗ C1)
2
∥∥ ≤ 4 ⇐⇒

∥∥A2
0 ⊗ C2

0 +A2
1 ⊗ C2

1 +A0A1 ⊗ C0C1 +A1A0 ⊗ C1C0

∥∥ ≤ 4

Ax and By are binary observables, so they square to identity (A2
x = (Ax,0 −Ax,1)

2 = A2
x,0 +

A2
x,1−Ax,0Ax,1−Ax,1Ax,0 = Ax,0+Ax,1 = I, where we used that the square of a projector equals

the projector and that Ax,0, Ax,1 are orthogonal and sum to identity).
Using this fact, we get

A2
0 ⊗ C2

0 = I⊗ 1

2
(B2

0 +B2
1 +B0B1 +B1B0) = I⊗ (I+

1

2
(B0B1 +B1B0))

A2
1 ⊗ C2

1 = I⊗ (I− 1

2
(B0B1 +B1B0))

Hence, ∥∥(A0 ⊗ C0 +A1 ⊗ C1)
2
∥∥ = ∥2I⊗ I+A0A1 ⊗ C0C1 +A1A0 ⊗ C1C0∥

≤ 2 + ∥A0A1 ⊗ C0C1∥+ ∥A1A0 ⊗ C1C0∥ = 2 + 2∥A0A1∥ · ∥C0C1∥
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where for the first inequality we used the triangle inequality and the fact that the norm of the
identity is 1 and for the last equality ∥A⊗B∥ = ∥A∥ · ∥B∥ and ∥AB∥ = ∥BA∥.

We see that ∥A0A1∥ ≤ ∥A0∥∥A1∥ =
√∥∥A2

0

∥∥∥∥A2
1

∥∥ = 1 and we also have

∥C0C1∥ =

∥∥∥∥12(B2
0 −B2

1 −B0B1 +B1B0

∥∥∥∥ =
1

2
∥B1B0 −B0B1∥ ≤ 1

2
(∥B1B0∥+ ∥B0B1∥) ≤ 1

Using the last two inequalities we have the desired result.

3.3 The Magic Square Game

In the previous section, we proved that the maximum winning probability for the CHSH game
is around 85%. Someone may wonder if there is a game that the players cannot always win with
classical strategies, but there is a quantum strategy so they have success probability 1. Well,
there is! It is called the Magic Square Game or Mermin-Peres Magic Square [27], [28]. The setup
is:

Figure 3.3: The Magic Square game setup: the sum of the binary variables at each row must be
even (0 (mod 2)) and the sum of each column must be odd (1 (mod 2)).

We have a 3×3 grid, which has to be filled with 0’s and 1’s, such that the parity of every row
is 0 and of every column is 1. This is impossible, since the parity of all the bits must be 0 and
1 at the same time, but we can convert it to a game. So, the referee randomly selects one row
or column and sends it to Alice (x ∈ {r1, r2, r3, c1, c2, c3}) and then selects a random cell y ∈ x

and sends it to Bob. (Note: there is a variation of the game where the referee sends a random
row to Alice and a random column to Bob, but the results are the same.) The players win, if
Alice responds with three bits (a1, a2, a3) that correspond to her input row or column and Bob
responds with a bit b that corresponds to his input cell, such that the parity of a1, a2, a3 is 0 if
the input is row and 1 if it is column, and the bit b matches with Alice’s bit in the corresponding
cell.
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We can use a similar argument with the CHSH game to see that Alice and Bob will fail in
at least one of the 18 possible questions that can be asked, so the classical value of the game is
17/18. However, there is a quantum strategy that makes them succeed with probability 1.

The key observation for finding a perfect quantum strategy is that even though there is no
solution for the system in Z2, there is an operator solution.

Figure 3.4: The operator solution of the Magic Square game: each row has product I⊗ I and
each column has product −I⊗ I. The players use these observables to obtain their answer for a

specific position on the grid.

Here, X,Y, Z are the Pauli matrices, for which we have P 2 = I with P any Pauli matrix,
Y = iXZ and XZ = −ZX. Using these properties, we see that the product of the observables in
each row is the identity matrix I and the product in each column is −I. Also, these observables
have eigenvalues 1 and -1, which means that their output is binary, as we desire.

So, the two players can use two EPR pairs for their strategy, with each having one part of
them. This means that the state they will use is:

|ψ⟩ =
(

1√
2
|00⟩+ 1√

2
|11⟩

)⊗2

If both measure their respective part of the EPR pair with the same observable, we have
already seen that they will get the same result. Thus if the players’ measurements are consistent
with the matrix above, then the outputs of Alice and Bob will be consistent, as well.

Moreover, the observables in each row and column commute, hence it does not matter which
order Alice will choose to measure with her 3 observables and it will not affect the outcomes.
Finally, using the product of the observables we see that the product of the outcomes will be 1
for each row and -1 for each column, which is the same as the parity constraint we have.

To sum up, Alice’s answer will always satisfy the constraints because of the product of the
operators she will use, and Bob’s answer will be consistent with Alice’s, because of the properties
of the EPR pair. Thus, the players will win the game with probability 1 (ωq(MS) = 1).
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Randomness Expansion

4.1 Introduction

The task of generating independent random bits is very significant in modern-day computing,
since it is used for various applications, such as cryptography, algorithms and physical simu-
lations. The quality of randomness, which means how close the output distribution is to the
desired distribution, is also very important for some applications, especially in cryptography,
where the quality of randomness affects the security of a protocol. Thus, it is very important to
construct physical devices that can produce reliably random bits.

However, it is impossible for classical computers to produce randomness. Since they use
deterministic operations on their input, the entropy of the input will always be greater than the
entropy of the output, which is called the data processing inequality. The best we can hope for is
pseudorandomness generators, which produce a distribution that is relatively close to the desired
one. There have also been some attempts to produce randomness from other physical sources,
but the output was of low quality and it was very hard to test them [29].

Fortunately, quantum mechanics provides a way to both generate truly random bits and also
test them. For the first part, we count on the fact that quantum mechanics has a probabilistic
nature. For the second part, the main idea to verify that the source of randomness behaves
quantumly is to use Bell’s inequalities or nonlocal games. For example, if we have two non-
communicating devices and play the CHSH game with them, then we can check their success
probability and determine if they have used quantum correlations. So, in order to take this
statistical test, the idea, which was first observed by Colbeck in his PhD thesis [11], was to play
many times sequentially the CHSH game [16].

This method would require 2 random bits for the input and could result to 2 bits that
contain less randomness (since there must be some correlation). However, using some rounds
of the protocol with a predetermined input, we can expand the initial entropy of the input. In
fact, we can expand exponentially the randomness of the seed (input) we use, which was first
achieved by Vazirani-Vidick [16].

21
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4.2 Preliminaries

4.2.1 Entropy

At first, we will need some definitions to gain a better perspective on randomness. Let X be
a discrete random variable. We denote supp(X) for the support set of X, which means all the
values v such that Pr(X = v) > 0.

The Shannon entropy of X is denoted H(X) and is defined as

H(X) =
∑

x∈supp(X)

−Pr(X = x) log(Pr(X = x))

We also define the max-entropy H0(X) = log(|supp(X)|) and the min-entropy:

H∞(X) = − log max
x∈supp(X)

Pr(X = x)

The Shannon entropy is a way to measure how much information is contained in a random
variable, while the max-entropy is an upper bound for it (if all values have equal probabilities)
and min-entropy shows how close the distribution of the random variable is to the uniform
distribution. That is why we prefer to use the min-entropy as a measure of randomness.

The conditional min-entropy is defined as

H∞(X|Y ) = − log

(∑
y

Pr(Y = y)2−H∞(X|Y=y)

)

Moreover, for two discrete random variables X,Y , their statistical distance is

∥X − Y ∥1 =
∑

u∈supp(Y )∪supp(X)

1

2

∣∣∣PrY (u)− PrX(u)
∣∣∣

With this we can define the smooth min-entropy of X for some ϵ > 0 as

Hϵ
∞(X) = sup

X′:∥X−X∥1≤ϵ
H∞(X ′)

and the smooth conditional min-entropy as

Hϵ
∞(X|Y ) = sup

X′,Y ′:∥(X,Y )−(X′,Y ′)∥≤ϵ
H∞(X ′|Y ′)

As we can see the smoothness is used to measure the maximum min-entropy that is approximately
close to the initial distribution.

We will use the smooth min-entropy as the measure of randomness produced. The smoothness
is used, because it is sufficient to be ϵ-close to the desired probabilities (it is cryptographically
secure for small enough ϵ) and the min-entropy generally shows the number of uniformly random
bits that can be extracted from the distribution of outputs. This extraction of random bits is
achieved with a procedure called extractor (which is described in [30]). Extractor is a determin-
istic algorithm that takes an input with min-entropy n and outputs an n-bit string that is (close
to) uniformly random. The extractor requires an extra seed of uniformly random bits (apart
from the seed used in the protocol as described below), but we will not take this into account.
There are some standard extractors that can be used, like Trevisan’s extractor [31].
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4.2.2 Concentration Inequalities

Lemma 4.2.1. (Chernoff Bound)
Let X1, X2, ..., Xn be independent Bernoulli (taking values only 0 or 1) random variables with

expected value µ. Then for any δ > 0, it holds that

Pr

(
n∑

i=1

Xi ≤ (1− δ)µn

)
≤ e−δ2µn/2

Pr

(
n∑

i=1

Xi ≥ (1 + δ)µn

)
≤ e−δ2µn/(2+δ)

Combining both of them, we have for any δ ∈ [0, 1]:

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µn

∣∣∣∣∣ ≥ δµn

)
≤ 2e−δ2µn/3

Lemma 4.2.2. (Hoeffding’s Inequality)
Let X1, X2, ..., Xn be independent random variables, such that Pr(Xi ∈ [ai, bi]) = 1. Let µ be

the expected value of their sum:

µ = E

[
n∑

i=1

Xi

]
Then, for any t > 0, we have

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ t

)
≤ 2e−2t2/

∑
i(bi−ai)

2

Lemma 4.2.3. (Azuma’s inequality)
Consider a sequence of random variables X1, X2, X3... such that E[Xn] <∞ and

E[Xn+1|X1, ..., Xn] = Xn

for any n ∈ N. Then this sequence is called a martingale.
If we consider another sequence of random variables Y1, Y2, Y3... and it holds that E[Xn] <∞

and E[Xn+1|Y1, ..., Yn] = Xn for any n ∈ N, then the sequence {Xk} is a martingale with respect
to the sequence {Yk}.

Suppose that the sequence X1, X2, X3... is a martingale with Pr(|Xk−Xk−1| ≤ ck) = 1. Then
for any n ∈ N and ϵ > 0, it holds that

Pr(Xn −X1 ≥ ϵ) ≤ e−ϵ2/2
∑n

i=1 c
2
i

Pr(Xn −X1 ≤ −ϵ) ≤ e−ϵ2/2
∑n

i=1 c
2
i

Combining both of them, we get

Pr(|Xn −X1| ≥ ϵ) ≤ 2e−ϵ2/2
∑n

i=1 c
2
i
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4.2.3 Randomness Expansion Protocols

We will define the properties of a randomness expansion protocol. The randomness expansion
protocols we refer to here will use some 2-player nonlocal game G with input alphabets X ,Y,
output alphabets A,B and ωq(G) > ωc(G). In order to carry it out, the referee/user must
communicate with two (or more) players/devices (we use both definitions below), which cannot
communicate with each other.

Two of the main parameters of these protocols are the seed length m and the number of
rounds n. The number of rounds is how many times the players play the nonlocal game and the
seed length is the length of the input bit-string to the referee, who produces the inputs to these
repetitive games with a deterministic procedure from this specific seed. We require the seed
to be (close to) uniformly random, so the size of m is approximately the entropy of the input.
In order to have randomness expansion, we must have output randomness (entropy), which is
greater than the size of m (which is not the case in pseudorandomness generators).

Moreover, for every protocol there is a test T that the referee uses to decide if the players
succeed in the protocol (which is the event we will denote as WIN) or fail. The most usual
test is the product test, in which the referee checks every round of the game separately and then
uses these statistics with another function g to determine the event WIN . For the protocol that
we will define later, we will use this type of tests, but for the upper bound we will consider the
general case.

The completeness c of the protocol is a real number in (0, 1], such that if the two players
play with the ideal strategy for the game, then Pr(WIN) ≥ c. We say that the completeness
holds with quantum devices, if this ideal strategy can be implemented with quantum devices.
We usually want the completeness to be exponentially close to 1 in n.

We also define the soundness s as the real number in (0, 1], such that if playing with whichever
strategy resulting Pr(WIN) ≥ s, guarantees that g ≤ Hϵ

∞(A,B|X,Y,WIN), where g is called
the expansion and it is the lower bound on the output randomness. The parameter ϵ is the
smoothness of the protocol and is defined above. We say that the soundness holds against
quantum devices, if the strategy can be any quantum (or classical) strategy. We usually want
the soundness and smoothness to be exponentially small in the seed length m.

Another important property of these protocols is robustness. Since ideal execution of any
protocol without errors and noise is not possible in the real world (especially with current quan-
tum technology), the referee’s test must accept the output of the devices with high probability,
even if there are some small deviations from the ideal strategy. So, if we consider the distribu-
tion produced by the ideal strategy with inputs x, y, Sideal(x, y), then another strategy S(x, y)
is η-close to the ideal if their statistical distance is at most η (∥Sideal(x, y)− S(x, y)∥1 ≤ η).
A protocol is η-robust, if it accepts with high probability any strategy which is η-close to the
ideal one. In statistical tests, we usually have robustness as an error tolerance parameter to the
expected value of the test’s output.

Finally, we say that a protocol is non-adaptive, if the user cannot use the output of previous
rounds to determine the inputs to future ones. In this chapter, we will see an exponential lower
bound and two doubly exponential upper bounds for non-adaptive protocols. In the next chapter,
we will present an adaptive protocol that achieves unbounded randomness with an extra device.
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4.3 Exponential Randomness Expansion Protocol

The Vazirani-Vidick protocol used the CHSH game to expand randomness exponentially [16].
Subsequent works from Miller and Shi [18],[32],[33] provided more robust and cryptographically
secure results. Also, in the paper from Arnon-Friedman, Renner and Vidick [34], a special
theorem called the entropy accumulation theorem [35] was used to prove the security of this kind
of protocols. These results also cover the hard case of a quantum adversary, which means that a
quantum device that may be entangled with the devices used tries to extract information about
the random string used. Our proof here will only cover the case of a classical adversary, but we
will prove a stronger result in the next chapter, which uses the generalised version of the entropy
accumulation theorem. The protocol used here is from Coudron, Vidick and Yuen [15].

All these protocols have similar intuition. There are some rounds called "test rounds" and
some that are called "generation rounds". At the test rounds, the inputs to the two players-
devices has the same distribution as in the definition of the nonlocal game. These rounds are used
by the referee to check if the players play honestly (using entanglement), so that certifies that
the randomness is generated by quantum properties. At the generation rounds, the input used
is predetermined and the outputs are used for the extracted randomness. The predetermined
input is used for economy of the random bits provided by the seed.

4.3.1 Protocol
Protocol arguments

• G : two-player non-local game, specified by a question set X ×Y, a probability distribution
q on X × Y , an answer set A× B, and a winning condition ω : X × Y ×A× B → {0, 1}

• x∗ ∈ X , y∗ ∈ Y : fixed inputs used for generation rounds

• D1, D2 : the two untrusted devices that will play the game G repeatedly

• n ∈ N: number of rounds

• γ ∈ (0, 1]: expected fraction of test rounds

• ωexp : expected winning probability in G

• δ : error tolerance

Protocol steps
For rounds i = 1, ..., n, the referee performs the following steps:

1. They choose Ti ∈ {0, 1} with Pr[Ti = 1] = γ. If Ti = 1, the referee chooses Xi, Yi ∈ X ×Y
according to the question distribution q. If Ti = 0, the referee chooses Xi = x∗ , Yi = y∗.

2. They send input Xi to Alice and Yi to Bob. They receive answers Ai and Bi, respectively.

3. If Ti = 0, the referee sets Ci = ⊥. If Ti = 1, they set Ci = ω(Xi, Yi, Ai, Bi).

At the end of the protocol, the referee aborts if |{i s.t. Ci = 0}| > (1− ωexp + δ) · γn.
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4.3.2 Proof

The whole analysis below is due to Coudron, Vidick and Yuen [15].

Definition 4.3.1. A two player nonlocal game will be characterized as (p0, η, 1− ξ)-randomness
generating against quantum players, if there is a specific input x0 ∈ X , such that the probability
that it is input, is qX(x0) =

∑
y∈Y q(x0, y) ≥ p0 and for any quantum strategy with success

probability at least ωq − η, it holds that

max
a∈A

p(A = a|X = x0) ≤ 1− ξ.

That means that for this specific input to Alice, Alice’s output cannot be fixed - there must be
some randomness in her answer. It is clear that we want to find the smallest possible ξ, because
then the distribution of the outputs would be closer to uniformly random and farther from a
deterministic response. It is proved that the CHSH game is (1/2, η, 1/2 +

√
3η)-randomness

generating, if we choose input x0 = 0 and the Magic Square is (1/9, η, 12/13 + η)-randomness
generating. Also it is clearly necessary that η < ωq(G)− ωc(G).

Theorem 4.3.2. Let G be a (p0, η, 1− ξ)-randomness generating game against quantum players
with input distribution q and mq the number of bits required to sample from the distribution q.
Also, let m be the seed length of the protocol, n the number of rounds, δ = p0η/8 the error tolerance
and ϵ and s the smoothness and the soundness of the protocol respectively. Also, we assume that
ϵ ≤ s and sϵ > e−Cmin(η2,p0ξ2)γn, where C is a universal constant. Then the protocol defined
in the previous section is a randomness expansion protocol with completeness c ≥ 1 − e−O(δ2n),
soundness s, smoothness ϵ and expansion g ≥ ξn/8 and is robust for any constant less than δ.

We can use this theorem to have exponential randomness expansion. The number of random
bits needed to determine which rounds to be test rounds are O(n ·h(γ)), where h(·) is the binary
entropy function. Also, considering |A × B| as constant, the input for the test rounds needs
O(γn) random bits. Therefore the seed must have length O(n · h(γ) + γn). If we choose some
small γ, for instance γ = O(1/n), then the seed has length O(log n) and the expansion is Ω(n),
so we get exponential randomness expansion.

4.3.2.1 Completeness

To prove the completeness of the protocol, we use the Chernoff bound (Lemma 4.2.1). We
consider players that play every round independently, so defining Zi as a binary random variable
such that Zi = 1 if the players succeed in the i-th test round, then when the players play honestly
(expected value of winning is ωq(G)):

Pr

(∣∣∣∣∣∑
i

Zi − ωq(G)γn

∣∣∣∣∣ ≥ δγn

)
≤ 2e−δ2γn/3ωq(G)

4.3.2.2 Soundness

Theorem 4.3.3. Suppose for the constants ζ with 1/2 ≥ ζ ≥ 2γ, η > 0 and s ≥ ϵ > 0 it holds
that

log
(
16/(ϵ2s)

)
n

<
min(p0ζ

2, η2)γ

30
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and also we have
Hϵ

∞(A,B|X,Y,WIN) ≤ ζn

and
Pr(WIN) ≥ s

where WIN is the event that the two players pass the test of the referee.
Then, there must exist two quantum devices that can play a single round of G, and an output

a0 ∈ A such that when the two devices play the game G, then

Pr(WIN) ≥ ωq(G)− 8δ/p0

and
Pr(A = a0|X = x0) ≥ 1− 8ζ.

In other words, it holds that the response of these two devices is close to being deterministic.
If we set ζ = ξ/8 and using δ ≤ p0η/8, we see that we have a contradiction with the game G
being (p0, η, 1− ξ)-randomness generating. Therefore, we have the desired result.

Proof. We define the probability space for the execution of the protocol as Ω = {(x, y, a, b, u) ∈
({0, 1}5)n}, where (x, y) are the strings of inputs from the referee to the devices, (a, b) are the
strings of outputs of the devices and u is a string with ui = 1 for test rounds and ui = 0 for
generation rounds. We will mark the corresponding random variables with capital letters, so
for example Ui is the random variable that equals 1 if and only if ui = 1. For one successful
execution of the protocol, we also define W =

∑
i Ui and from the referee’s test, since we have

error tolerance δ, we get
1

W

∑
i:Ui=1

1[WINi] ≥ ωq(G)− δ

where 1[WINi] = 1, if the players succeed in the ith round and 0, if they fail.
We want to study only the test rounds with input x0 (so we can use the property of random-

ness generating games). We denote with W ′ the number of rounds with ui = 1 and xi = x0.
Thus, we can eliminate some extreme cases using the Chernoff bound (Lemma 4.2.1):

Pr
(
|W − γn| ≥ γn

3

)
≤ e−γn/27 ≤ ϵ2/4

and
Pr
(
|W ′ − p0γn| ≥

p0γn

3

)
≤ e−p0γn/27 ≤ ϵ2/4

where the last inequalities result from the condition on the parameters.
Next, we define the new event WIN ′, in which the players have passed the referee’s test

(event WIN) and also
|W − γn| ≤ γn

3
, |W ′ − p0γn| ≤

p0γn

3

Using the union bound and ϵ2 ≤ ϵ/2, we have that

Pr
(
|W − γn| ≤ γn

3
∧ |W ′ − p0γn| ≤

p0γn

3

)
≥ 1− ϵ2/2− ϵ2/2 ≥ 1− ϵ/4 (4.1)

Claim 4.3.4. If X is a random variable and T an event such that Pr(T ) ≥ 1− β, then we have
that Hϵ−2β

∞ (X|T ) ≤ Hϵ
∞(X).
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Proof. We define the random variable Y that has the same distribution as X conditioned on
T. Then there must be another random variable Ỹ on the probability space conditioned on T ,
such that H∞(Ỹ ) = Hϵ−2β

∞ (Y ) = Hϵ−2β
∞ (X|T ) and

∥∥∥Ỹ − Y
∥∥∥
1
≤ ϵ − 2β. We can extend Ỹ

to a new variable X̃ in an arbitrary way, under the condition H∞(X̃) ≥ H∞(Ỹ ). Then, since
Pr(T ) ≥ 1−β, we have

∥∥∥X − X̃
∥∥∥
1
≤ (ϵ− 2β)/(1−β)+β ≤ ϵ and we get the desired result.

Using the above claim, the initial assumption that Hϵ
∞(A,B|X,Y,WIN) < ζn and (4.1), we

get Hϵ/2
∞ (A,B|X,Y,WIN ′) < ζn. This means by the definition of smooth min-entropy that for

any distribution q with ∥q − p∥1 ≤ ϵ/2, H∞(A,B|WIN ′, X, Y )q < ζn. Here q and p are distri-
bution on the probability space Ω′ which is Ω conditioned on the event WIN ′. So, if we define a
set S ⊆ Ω′ which contains all (x, y, a, b, u) such that Pr((A,B) = (a, b)|(X,Y ) = (x, y)) > 2−ζn

(we can derive this relation from the definition of min-entropy), then from ∥q − p∥1 ≤ ϵ/2, we
get Pr(S|WIN ′) ≥ ϵ/2 (this is the measure on probability space Ω′).

In order to find Pr(S), we need to calculate Pr(WIN ′) first. Since Pr(WIN) ≥ s and s ≥ ϵ,
using the union bound we have

Pr(WIN ′) ≤ 1− s+ ϵ2/4 + ϵ2/4 ≤ 1− s+ ϵ/2 ≤ 1− s/2 ⇐⇒ Pr(WIN ′) ≥ s/2

As a result, we get
Pr(S) = Pr(S|WIN ′)Pr(WIN ′) ≥ ϵ

2
· s
2
=
ϵs

4
We continue by proving the two claims below (4.3.5 and 4.3.6) that show some properties of

the sequences (x, y, a, b, u) ∈ S.

Claim 4.3.5. For all (x, y, a, b, u) ∈ S except for a fraction of at most ϵ of them, it holds that

1

w′

∑
i∈[n],ui=1,xi=x0

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i) ≥ 1− 4ζ

Proof. Since (x, y, a, b, u) ∈ S, Pr((A,B) = (a, b)|(X,Y ) = (x, y)) > 2−ζn. Thus, applying
Bayes’ Rule, we get:

Pr((A,B) = (a, b) | (X,Y ) = (x, y)) > 2−ζn ⇐⇒
n∏

i=1

Pr(Ai = ai | (A,B)<i = (a, b)<i, (X,Y ) = (x, y)) > 2−ζn ⇐⇒

n∑
i=1

− logPr(Ai = ai | (A,B)<i = (a, b)<i, (X,Y ) = (x, y)) < ζn

where we ignored Bi, because it does not change the lower bound. Furthermore, (X,Y )>i and
Yi are independent from Ai, so we can reduce

n∑
i=1

− logPr(Ai = ai | Xi = xi, (A,B,X, Y )<i = (a, b, x, y)<i) < ζn

Using concavity of logarithm and Jensen’s inequality:

1

n

n∑
i=1

− logPr(Ai = ai | Xi = xi, (A,B,X, Y )<i = (a, b, x, y)<i) ≥

− log

(
1

n

n∑
i=1

Pr(Ai = ai | Xi = xi, (A,B,X, Y )<i = (a, b, x, y)<i)

)
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Hence we get:

1

n

n∑
i=1

Pr(Ai = ai | Xi = xi, (A,B,X, Y )<i = (a, b, x, y)<i) > 2−ζ > 1− ζ

where the final inequality is because 1/2 ≥ ζ.
Since there are at most 4γn/3 test rounds:

n∑
i=1

Pr(Ai = ai | Xi = xi, (A,B,X, Y )<i = (a, b, x, y)<i)

=
∑

i∈[R],Xi=x0

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i)

+
∑

i∈[n],Xi ̸=x0

Pr(Ai = ai | Xi ̸= x0, (A,B,X, Y )<i = (a, b, x, y)<i)

≤
∑

i∈[n],Xi=x0

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i) +
4γn

3

Using the fact above:

1

n

∑
i∈[n],Xi=x0

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i) > 1− ζ − 4γ

3
≥ 1− 2ζ.

Furthermore, we see that conditioned on Xi = x0, a round is chosen as a test round inde-
pendently. So, the variables Pr(Ai = ai | Xi = x0, Ui = 1, (A,B,X, Y )<i = (a, b, x, y)<i) are
independent and have expected value greater than 1− 2ζ. Using Hoeffding’s inequality (Lemma
4.2.2) we get:

Pr

∣∣∣W ′(1− 2ζ)−
∑

i∈[n],Ui=1

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i)
∣∣∣ ≥W ′ · 2ζ


≤ 2e−8ζ2W ′ ≤ sϵ2/4 ≤ ϵPr(S)

where the second inequality is from the choice of parameters.
We also have

Pr

(
1

W ′Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i) ≤ 1− 4ζ

)

≤ Pr

∣∣∣W ′(1− 2ζ)−
∑

i∈[n],Ui=1

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i)
∣∣∣ ≥W ′ · 2ζ


≤ ϵPr(S)

Thus, we get the desired result.

Claim 4.3.6. For all (x, y, a, b, u) ∈ S except for a fraction of at most ϵ of them, it holds that

1

w

∑
i∈[n],ui=1

Pr(WINi | (A,B,X, Y )<i = (a, b, x, y)<i) ≥ ωq(G)− 2δ
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Proof. We define the random variable Zi ∈ {0, 1} for any i = 1, ..,W such that Zi = 1 if the
players succeed at the i-th test round. By the condition of winning we have that∑

i

Zi ≥W (ωq(G)− δ) (4.2)

We also define the sequence of random variables (Vk), such that

Vk =
k∑

i=1

Zi − E[Zj |Zj−1, ..., Z1, U ]

This sequence is a martingale with respect to the sequence (W,Z1), (W,Z1, Z2), ..., (W,Z1, .., ZW ),
so by Azuma’s inequality (Lemma 4.2.3) we get (since V1 = 0)

Pr

(∣∣∣∑
i

Zi −
∑
i

E[Zj |Zj−1, ..., Z1,W ]
∣∣∣ ≥Wδ

)
≤ 2e−Wδ2/2 ≤ ϵ2s/4

where we used the bound for W in S and the selection of parameters for the last inequality.
Using (4.2), we can get

Pr

(∑
i

E[Zj |Zj−1, ..., Z1, U ]| ≤W (ωq(G)− 2δ)

)

≤ Pr

(∑
i

E[Zj |Zj−1, ..., Z1, U ]| ≤
k∑

i=1

Zi −Wδ

)
≤ ϵ2s/4

However, the probabilities here are over Ω′, since we used (4.2). In order to remove the
condition on WIN ′, we can multiply by s/2 ≤ Pr(WIN ′), so the bound becomes ϵ2s2/8 ≤
ϵ2s/4 ≤ ϵPr(S). So, we derive the desired result.

Concluding the proof of Theorem 4.3.3, we can use the two claims to find some (x, y, a, b, u) ∈
S such that both propositions hold. Then, suppose that for k1 number of rounds it holds that

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i) ≤ 1− 4c1ζ

and for k2 number of rounds it holds that

Pr(WINi | (A,B,X, Y )<i = (a, b, x, y)<i) ≤ ωq(G)− 2c2δ

Then, we have that

1− 4ζ ≤ 1

w′

∑
i∈[n],ui=1,xi=x0

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i)

≤ 1

w′ [(w
′ − k1) · 1 + k1(1− 4c1ζ)] = 1− 4k1c1ζ

w′ ⇐⇒ k1 ≤
w′

c1

and since from the game G we have Pr(WINi | (A,B,X, Y )<i = (a, b, x, y)<i) ≤ ωq(G), we have

ωq(G)− 2δ ≤ 1

w

∑
i∈[n],ui=1

Pr(WINi | (A,B,X, Y )<i = (a, b, x, y)<i)

≤ 1

w
[(w − k2)ωq(G) + k2(ωq(G)− 2c2δ)] = ωq(G)−

2k2c2δ

w



CHAPTER 4. RANDOMNESS EXPANSION 31

However, we also have from the definition of S:

w ≤ 4γn

3
=

2

p0

2p0γn

3
≤ 2

p0
w′

thus we get

ωq(G)− 2δ ≤ ωq(G)−
2k2c2δ

w
≤ ωq(G)−

2k2c2p0δ

2w′ ⇐⇒ k2 ≤
2w′

c2p0

Overall, we have that

k1 + k2 ≤ w′
(

1

c1
+

2

c2p0

)
If we put c1 = 2 and c2 = 4/p0, then k1 + k2 < w′, so we can find some round i, such that both
of the relations hold:

Pr(Ai = ai | Xi = x0, (A,B,X, Y )<i = (a, b, x, y)<i) ≥ 1− 8ζ

Pr(WINi | (A,B,X, Y )<i = (a, b, x, y)<i) ≥ ωq(G)− 8δ/p0

We can now find a strategy for a single round of the game. Before the game starts, the
players execute the protocol with inputs (x, y) until round i. If they do not get outputs (a, b),
they abort and start again. When they have achieved these outputs, they stop communicating
and play a round of the game G. The properties of their strategy now are those from the relations
above.

4.4 Upper Bounds on Randomness

We have proved that we can have exponential randomness expansion using the Vazirani-Vidick
protocol, which uses iteratively the CHSH game. Nonetheless, if the protocol is non-adaptive,
which means that we cannot use its output to produce some input in a later round, there are
some limitations on the randomness we can generate. Next we will present two upper bounds
on these randomness expansion protocols, which were suggested by Coudron, Vidick and Yuen
[15]. We will prove these bounds by showing that the two players have cheating strategies, so
that they can make the referee accept, but generating less randomness.

The main idea behind the cheating strategies is that after a number of rounds, there must be
some correlations among the inputs, which are independent from the random seed. The players
can use these correlations to generate outputs without using quantum properties, so the output
entropy will not increase.

In order to observe better the correlations among the inputs, we can define the input matrix.

Definition 4.4.1. If P is a non-adaptive protocol for randomness expansion with n rounds
and seed length m, then we define the input matrix Mp as a n × 2m matrix with elements
Mp(i, σ) = (X(σ)i, Y (σ)i), where X(σ)i and Y (σ)i are the input sequences for D1 and D2

respectively resulting from the seed σ ∈ {0, 1}m.

So, the input matrix is a matrix, in which every column is the sequence of inputs correspond-
ing to a specific value of the seed. It is clear that every entry of the matrix is well defined, as for
a specific choice of seed we have a defined sequence of inputs. Using this matrix, it is easier to
find correlations among the inputs.
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4.4.1 A doubly exponential bound for perfect games

This doubly exponential upper bound is based on games with ωq(G) = 1, so the referee’s test is
checking that the players succeed in every round.

Theorem 4.4.2. Let G be a game such that ωq(G) = 1 and P be a randomness expansion
protocol with input alphabets X ,Y and output alphabets A,B. Suppose that the test of the referee
is that the devices win every round of the protocol and completeness and soundness hold with
quantum devices. Then the expansion achieved by P must satisfy

g(m) ≤ |X × Y|2m log |A × B| − log(1− 2ϵ)

where ϵ is the smoothness of the protocol P .

Proof. We define Mi ∈ (X × Y)2
m to be the i-th row of the input matrix and also the set

F (M) ⊂ [n] as the set of round indices i such that Mi ̸= Mj for all j < i. It is easy to see that
|F (M)| ≤ |X × Y|2m and since the input matrix of the protocol is known to the devices, they
are able to find this set.

So, the cheating strategy is as follows: in every round i, the devices can check if i ∈ F (M).
If it is, then they play the game honestly with the perfect strategy. If not, then they can find
another round j, such that Mj = Mi (from the definition of F (M)). In this round the inputs
are the same as in round i regardless of the seed, because the whole row is the same. Thus, for
round i they can use the same output as in round j, which is sure to pass the referee’s test. As
a result, the only rounds that entropy is generated are the rounds in F (M).

We conclude that since the support of this probability space is

|A × B||X×Y|2m

the max-entropy is
H0(A,B|X,Y,WIN) = |X × Y|2m · log |A × B|

As we know, the expansion of the protocol is the smooth min-entropy of the outputs. There-
fore, in order to have the final result, we can bound the smooth min-entropy with the following
lemma:

Lemma 4.4.3. If X is a discrete random variable and ϵ ∈ [0, 1), then

Hϵ
∞(X) ≤ H0(X)− log(1− 2ϵ)

Proof. If µ = Hϵ
∞(X), then there must be by definition another discrete random variable Y such

that ∥Y −X∥1 ≤ ϵ and H∞(Y ) = µ. Hence, we have for every u ∈ supp(X), Pr(Y = u) ≤ 2−µ

and also

∥Y −X∥1 =
1

2

∑
u∈supp(Y )∪supp(X)

|PrY (u)− PrX(u)| ≥ 1

2

∑
u∈supp(X)

|PrY (u)− PrX(u)|

≥ 1

2

∣∣∣∣∣ ∑
u∈supp(X)

PrY (u)−
∑

u∈supp(X)

PrX(u)

∣∣∣∣∣ = 1

2

1−
∑

u∈supp(X)

PrY (u)

 ≥ 1

2
(1−|supp(X)|2−µ)

Therefore, |supp(X)|2−µ ≥ 1 − 2ϵ and taking logarithm in this relation and using H0(X) =

log |supp(X)|, we get the desired result.
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Using lemma 4.4.3 and the value of max-entropy, we finally get

Hϵ
∞(A,B|X,Y,WIN) ≤ |X × Y|2m log |A × B| − log(1− 2ϵ)

4.4.2 A doubly exponential bound for robust protocols

We can generalise the cheating strategy above, so that we can prove a doubly exponential upper
bound for any non-adaptive and robust randomness expansion protocol. In this case, we do not
need the game G to have a perfect strategy and the referee’s test to be checking if the players
win in all rounds. This fact rules out the strategy that the players used in the previous case,
because the referee could change their test, so that they can detect patterns or repetitions in the
players’ answers. However, there is a more elaborate cheating strategy that can pass any type of
tests. The general idea is instead of finding a specific output to each question pair, to apply their
strategy for multiple times and generate an approximate distribution of the real distribution
of outputs to this question. After having this distribution, they can use shared randomness to
sample from it in order to generate their answers.

Theorem 4.4.4. If P is a non-adaptive η-robust protocol for randomness expansion with seed
length m, input alphabets X ,Y and output alphabets A,B, such that completeness and soundness
hold with quantum devices, then the expansion achieved by P must satisfy:

g(m) ≤ K · |X × Y|2m · log |A × B| − log(1− 2ϵ)

where K = Θ
(
|A×B|2

η2
log |A×B|·|X×Y|2m |

η

)
and ϵ is the smoothness of the protocol P .

As a result of the theorem, any robust randomness expansion protocol can have expansion
at most g(m) = 2O(2m), so unbounded randomness expansion is impossible for non-adaptive
protocols, if we allow the devices used to have memory. However, we will show in the next chapter
that unbounded randomness is possible with adaptive protocols, if we increase the number of
devices used to 3.

Proof. Since completeness and soundness of G hold with quantum devices on the game G, then
there is an ideal quantum strategy for the players in a single round of the game that can be used
in the protocol, let it be SG. Based on this strategy, we will find a new cheating strategy S′.

We consider the input matrix M , as defined above. For any round i, the players check if
i ∈ F (M), which means that there is no previous round with the same row in the input matrix.
If it is, then they perform the sampling step: they play the game G repeatedly using the ideal
strategy SG for K times, where K is the value defined above. As a result they produce sequences
of outputs a(i) = (aik)k=1,..,K (for Alice) and b(i) = (bik)k=1,..,K (for Bob), which they store locally.
Then they continue with the replay step that we define below. If i /∈ F (M), they perform only
the replay step.

In the replay step, if it is round i, the players find the round j ∈ F (M) such that Mi =Mj .
Then they use shared randomness to choose some k ∈ {1, ...,K} and they output a(j)k and b

(j)
k
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as their answers to the referee. As we see the distribution of their answers has density function

qi(a, b) =
1

K

K∑
k=1

1

[
(a

(i)
k , b

(i)
k ) = (a, b)

]
Since the protocol P is η-robust, if we want strategy S′ to be successful with referee’s test,

we need to prove that with high probability this distribution has statistical distance at most η
with the distribution generated by the strategy SG for the same question pair (xi, yi).

Using Hoeffding’s inequality (Lemma 4.2.2), we get:

Pr

(
|qi(a, b)− SG(a, b|xi, yi)| >

η

2|A × B|

)

≤ Pr

(
K∑
k=1

∣∣∣∣∣ 1K 1[(a
(i)
k , b

(i)
k ) = (a, b)]− SG(a, b|xi, yi)

∣∣∣∣∣ > η

2|A × B|

)

≤ 2exp

(
− η2

2K · 1/K2 · |A × B|2

)
Using the union bound for any pair (a, b), we have

Pr(∥qi − SG(·, ·|xi, yi)∥1 > η) ≤ |A × B| · exp
(
−Θ

(
η2K

|A × B|2

))
Thus, again using the union bound, the probability that there is a round i ∈ F (M) such that
|qi − SG(·, ·|xi, yi) | > η is at most |F (M)| · |A×B| · exp

(
−Θ

(
η2K

|A×B|2

))
. Using the value for K,

we have that this probability is less than η/2.
We have ensured that the cheating strategy S′ will be accepted by the referee. It only suffices

to prove the upper bound on the randomness expansion. Firstly, we can derandomise the replay
step. We assume that the shared randomness the two players use is r. Using strategy S′ the
success probability is Pr(WIN) ≥ c for some c that is accepted by the referee. Using the
probabilistic method, we see that there is a fixed random string r∗ that can achieve Pr(WIN) ≥
c. So, the players can precompute r∗ and use this instead of shared randomness. Consequently,
there is no randomness generated at the replay step. So, the only randomness produced is at the
sampling step, which is a K-times repetition of the strategy used in the previous case, so we get
the desired result.



Chapter 5

Infinite Randomness Expansion

5.1 Introduction

In the last chapter, we saw that the randomness generated by any non-adaptive robust protocol is
bounded (double exponentially). In this chapter, we see what we can do with adaptive protocols.
We do not know yet if we can compose protocols that use the same devices, because they have
much information from their previous output that can be used on their new input. So, we look
what is possible with more than 2 devices.

The first major result came from Coudron and Yuen in 2014 [17]. Their protocol used 8
non-signalling devices and achieved infinite (unbounded) randomness expansion. That is with
an initial seed, we can use randomness expansion subprotocols iteratively for as many times as
we desire. In their paper, they mention 4 problems for infinite randomness expansion:

The Input Security Problem The VV protocol (from [16]) requires the seed to be uniform
to the eavesdropper, but this is not the case in an adaptive protocol.

The Extractor Seed Problem We need to extract randomness from the string and the seed
that the extractor uses may not be secure.

The Conditioning Security Problem The output guarantees only hold conditioned on the
protocol succeeding, which can probably skew the distribution.

The Compounding Error Problem Errors will accumulate with each iteration of the proto-
col.

The 4th problem is solved in the analysis of the protocol. The other 3 problems are solved
with the help of 4 devices that operate to secure the output of every randomness expansion
subprotocol.

In detail, their idea is to use 2 clusters of 4 devices, let them be C1 and C2. Each cluster has
two devices that execute an exponential randomness expansion protocol, in their case the VV
protocol. The random output of this subprotocol is used with the other 2 devices of the cluster,
which execute a subprotocol called RUV (from the paper of Reichardt, Unger and Vazirani [36]).
This subprotocol uses a property of nonlocal games called rigidity and reduces the entropy, but
at the same time makes it secure from the devices of the other cluster. As a result, the cluster

35
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achieves to expand randomness which is completely secure from the devices of the other cluster.
Thus, we can use the other cluster to further expand randomness. We can do this procedure for
unlimited number of times and it is proved that the errors accumulate to a small upper bound.

Later, in a paper from Chung, Shi and Wu [19], it is proved that any randomness expansion
protocol can guarantee the same security and performance, even if its uniform-to-all input is
replaced by a uniform-to-device input, thus solving the 3 first problems. In combination with the
exponential randomness expansion protocol of Miller and Shi [18], this theorem, the Equivalence
Lemma, which will be explained in Section 5.2, makes possible to have infinite randomness
expansion with 4 devices; we just have 2 clusters of 2 devices that execute the Miller and Shi
protocol and cross-feed each other.

The goal here is to reduce the number of devices to 3. The general idea is to use the
Equivalence Lemma and a subprotocol that expands randomness, but keeping it secure from the
one of the two devices. So, we can have 3 clusters that we alternate: {D1, D2}, {D2, D3} and
{D3, D1} and the first device of the pair is the device used for the output randomness, while the
output must remain uniformly random from the second device and some eavesdropper, which
also contains the third unused device. Hence, since the new input is uniform to the devices of
the next cluster, using the Equivalence Lemma, we get the desired security.

It is clear that we need a new randomness expansion protocol that makes its input secure for
the one of the two devices, as well as the eavesdropper. We call this protocol (or subprotocol
of the final infinite expansion protocol), Blind Randomness Expansion Protocol (BRE). In order
to prove that such a protocol can exist, we use the Generalised Entropy Accumulation Theorem
[20]. This is a new updated version of the Entropy Accumulation Theorem, which we mentioned
in the previous chapter, and can be used for various applications.

Consequently, we present the two main theorems, the Equivalence Lemma and the Gener-
alised Entropy Accumulation Theorem.

5.2 Equivalence Lemma

We will use the notation of the original paper [19] to define the physical randomness extractors.
We have a physical system S = (X,D,E), where X is the source, a classical system that
corresponds to the seed we have seen in randomness expansion protocols, D is the quantum
system, which consists of t quantum devices (D1, D2, ..., Dt) with some specific operations, which
do not allow communication with each other, and E is a quantum adversary.

Definition 5.2.1. (Uniform source) The system X is an (n, k) source, if the seed is a string of
n bits with min-entropy k (the probability of any string is less than 2−k). However, randomness is
relative, so this min-entropy value is conditioned on the side information of the other components.
If the min-entropy is taken with the scope of all subsystems of S (except for X), then we say
that the source is uniform-to-all random. If it is taken on the devices D = (D1, D2, ..., Dt), then
the source is uniform-to-devices.

The formal definition of a physical randomness extractor is below.
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Definition 5.2.2. (Physical Randomness Extractor) A physical randomness extractor for
a physical system S(X,D,E) is a classical deterministic algorithm, which uses the source X
as input to set its parameters and classically interacts with the devices of D, in order them to
execute their operations. The output of the algorithm is a bit A ∈ {0, 1}, where 1 is for accepting
and 0 for rejecting and a string Z ∈ {0, 1}∗, which corresponds to the desired random string.

Theorem 5.2.3. (Equivalence Lemma) [19]
Any seeded PRE(Physical Randomness Extractor) for uniform-to-all seeds is also a seeded

PRE for uniform-to-devices seeds with the same performance parameters using the same imple-
mentation.

This result is very strong, since it let us compose different protocols for randomness expansion
only by ensuring that the input to a protocol is uniform to its devices.

5.3 Generalised Entropy Accumulation Theorem

At first, we need to describe the setup. We have two quantum registers, R (user’s register) and
E (eavesdropper’s register). Initially they are at states R0 and E0 and the density matrix of the
initial joint state is ρR0E0 . In order to simulate the evolution of the two systems, we consider a
sequence of channels {Mi}ni=1 with Mi ∈ CPTP (Ri−1Ei−1, CiAiRiEi) for each i = 1, .., n which
represent the iterative process that will finally accumulate entropy. Ci’s are classical systems,
which will be used to denote if a round is successful or not, and Ai’s are the source of entropy.

Figure 5.1: The setup for the Generalised Entropy Accumulation Theorem: we have two system
E and R that evolve through the operation of the quantum channels Mi, which also produce a

classical outcome Ai.

We require two conditions for the channels Mi. We will call the first condition, the non-
signalling condition, which states that ∀Mi, there exists a channel Ri ∈ CPTP (Ei−1, Ei) such
that TrAiRiCi ◦ Mi = Ri ◦ TrRi−1 . This means that the evolution of the system Ei−1 is not
affected by the state Ri−1, so we have no form of communication between R and E.

For the second condition, if we define M′
i = TrCi ◦ Mi, there must exist a channel T ∈

CPTP (AnEn, C
nAnEn) such that

Mn ◦ ... ◦M1 = T ◦M′
n ◦ ... ◦M′

1 (5.1)
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and T is of the form

T (ΩAnEn) =
∑

y∈Y,z∈Z
(Π

(y)
An ⊗Π

(z)
En

)ΩAnEn(Π
(y)
An ⊗Π

(z)
En

)⊗ |r(y, z)⟩ ⟨r(y, z)|Cn (5.2)

where {Π(y)
An}y and {Π(z)

En
}z are families of mutually orthogonal projectors on An and En, and

r : Y × Z → C is a deterministic function. Intuitively, this condition says that the classical
statistics generated in every round (the classical system Ci) can be reconstructed at the end of
the protocol with the information available on the final states An and En, which is the case in
most applications.

We define P to be the set of probability distributions on the alphabet C of the classical systems
Ci’s. From now on, let Ẽi−1 be a system isomorphic to Ri−1Ei−1. For any q ∈ P we define the
set of quantum states

Σi(q) = {vCiAiRiEiẼi−1
= Mi(ωRi−1Ei−1Ẽi−1

)| ω ∈ S(Ri−1Ei−1Ẽi−1) and vCi = q}, (5.3)

where vCi denotes the probability distribution over C that emerge from the reduced state of the
outcome as Pr[c] = ⟨c| vCi |c⟩. As a result, a state σ belongs to the set Σi(q), if and only if the
state Mi(σ) has output distribution q on the system Ci.

Considering the above definition 5.3, we define min-tradeoff function.

Definition 5.3.1. A function f : P → R is called a min-tradeoff function for the sequence of
channels {Mi} if

f(q) ≤ min
v∈Σi(q)

H(Ai|EiẼi−1)v, ∀i = 1, ..., n. (5.4)

This means that the function f is upper bounded by any possible entropy of a state with
output distribution of Ci equal to q. Note that if Σi(q) = ∅, then f(q) can be chosen arbitrarily.

We define two important distributions, δx with x ∈ C which is distribution with all the
weight on element x, and freq(Cn), where Cn ∈ Cn which is the distribution on C defined by
the frequency of its letters: freq(Cn)(c) = |{i∈1,...,n:Ci=c}|

n .
We also define some quantities related to a min-tradeoff function that will be used in the

final result:
Max(f) := max

q∈P
f(q),

Min(f) := min
q∈P

f(q),

MinΣ(f) := min
q:Σ(q)̸=∅

f(q)

V ar(f) := max
q:Σ(q)̸=∅

∑
x∈C

q(x)f(δx)
2 −

(∑
x∈C

q(x)f(δx)

)2

where Σ(q) = ∪iΣi(q).
Finally in this context, an event Ω is defined as a subset of Cn, and for a final state ρCnAnEnRn

we have Prρ[Ω] =
∑

cn∈Ω Tr[ΠcnρCnAnEnRnΠcn ] for the probability of the event Ω and

ρCnAnEnRn|Ω =
1

Prρ[Ω]

∑
cn∈Ω

|cn⟩ ⟨cn|Cn ⊗ΠcnρCnAnEnRnΠcn (5.5)

for the state conditioned on Ω, where Πcn is a projector of the system Cn on the event Cn = cn.
We now state the main theorem.



CHAPTER 5. INFINITE RANDOMNESS EXPANSION 39

Theorem 5.3.2. (from [20]) Consider a sequence of channels Mi ∈ CPTP (Ri−1Ei−1, CiAiRiEi)

for i ∈ {1, ..., n}, which satisfy the non-signalling condition and (5.1). Let ϵ ∈ (0, 1), α ∈ (1, 3/2),
Ω ⊂ Cn, ρR0E0 ∈ S(R0E0), and f be an affine min-tradeoff function with h = mincn∈Ω f(freq(c

n)).
Then,

Hϵ
min(A

n|En)Mn◦...◦M1(ρR0E0
)|Ω

≥ nh− n
α− 1

2− α

ln(2)

2
V 2 − g(ϵ) + α log(1/Prρn [Ω])

α− 1
− n

(
α− 1

2− α

)
K ′(α)

where Pr[Ω] is the probability of observing event Ω, and

g(ϵ) = − log
(
1−

√
1− ϵ2

)
,

V = log
(
2d2AA+ 1

)
+
√
2 + V ar(f),

K ′(α) =
(2− α)3

6(3− 2α)3ln(2)
2

α−1
2−α

(2 log dA+Max(f)−MinΣ(f))ln3
(
2

α−1
2−α

(2 log dA+Max(f)−MinΣ(f)) + e2
)
,

with dA = maxi dim(Ai).

Corollary 5.3.3. For the same settings given above we have

Hϵ
min(A

n|En)Mn◦...◦M1(ρR0E0
)|Ω ≥ nh− c1

√
n− c0

for c1 and c0 defined as

c1 =

√
2ln(2)V 2

η
(g(ϵ) + (2− η) log(1/Prρn [Ω]))

c0 =
(2− η) log(1/Prρn [Ω]) + η2g(ϵ)

3ln2(2)V 2(2η − 1)3
2

1−η
η

(2 log dA+Max(f)−MinΣ(f))ln3
(
22 log dA+Max(f)−MinΣ(f) + e2

)
with η =

2ln(2)

1 + 2ln(2)
, g(ϵ) = log

(
1−

√
1− ϵ2

)
, V = log

(
2d2A + 1

)
+
√
2 + V ar(f).

We will use Corollary 5.3.3 to prove Blind Randomness Expansion.

5.4 Blind/Local Randomness Expansion Protocol (BRE)

For the following protocol, we need to consider Bob and Eve as one player, let it be Eve, because
we require the generated randomness to be hidden from both Bob and Eve. The referee sends the
corresponding part of the question to Alice, whose output will be the generated randomness of
the protocol, and the other one to Eve. There will be two kinds of rounds: the generation rounds
with a specific pair of inputs, where the referee collects the outputs for the final randomness, and
the test rounds, where the referee checks if the players play honestly (checking the condition of
the nonlocal game). The statement of the protocol is similar with the one in Protocol 4.3.1, but
it is shown below for convenience.
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Blind Randomness Expansion Protocol (BRE)
Protocol arguments

• G : two-player non-local game, specified by a question set X ×Y, a probability distribution
q on X × Y , an answer set A× B, and a winning condition ω : X × Y ×A× B → {0, 1}

• x∗ ∈ X , y∗ ∈ Y : fixed inputs used for generation rounds

• D : untrusted device capable of playing one side of G repeatedly

• n ∈ N: number of rounds

• γ ∈ (0, 1]: expected fraction of test rounds

• ωexp : expected winning probability in G

• δ : error tolerance

Protocol steps
For rounds i = 1, ..., n, the referee performs the following steps:

1. They choose Ti ∈ {0, 1} with Pr[Ti = 1] = γ. If Ti = 1, the referee chooses Xi, Yi ∈ X ×Y
according to the question distribution q. If Ti = 0, the referee chooses Xi = x∗ , Yi = y∗.

2. They send input Xi to Alice and Yi to Eve. They receive answers Ai and Bi, respectively.

3. If Ti = 0, the referee sets Ci = ⊥. If Ti = 1, they set Ci = ω(Xi, Yi, Ai, Bi).

At the end of the protocol, the referee aborts if |{i s.t. Ci = 0}| > (1− ωexp + δ) · γn.

Theorem 5.4.1. (from [20]
The referee executes Protocol BRE. Alice and the adversary Eve cannot communicate with

each other. We define Ri and E′
i to be the states of their quantum systems respectively and

Ei := T iXiY iBiE′i to be the side-information available to Eve after the i-th round of the protocol.
Also, Ni ∈ CPTP (Ri−1Ei−1, CiAiRiEi) is a quantum channel that corresponds to the i-th round
and N test

i is the same as Ni, but only when Ti = 1. Let ρAnCnRnEn be the final state of the
systems and Ω the event that the referee does not abort (like it was defined in 5.5).

Let g : P({0, 1}) → R be an affine function satisfying the conditions

g(p) ≤ inf
ω∈S(Ri−1Ei−1Ẽi−1):Ntest

i (ω)Ci
=p
H(Ai|EiẼi−1)Ni(ω),

Max(g) = g(δ1),

where Ẽi−1 ≡ Ri1Ei−1 is a purifying system and δx is the distribution with all the weight on x.
Then, for any ϵα, ϵs ∈ (0, 1) (ϵα for soundness and ϵs for smoothness), either Pr[Ω] ≤ ϵα or

Hϵs
min(A

n|En) ≥ nh− c1
√
n− c0 (5.6)

for c1, c0 ≥ 0 independent of n and

h = min
p′∈P({0,1}):p′(0)≤1−ωexp+δ

g(p′),
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where ωexp is the expected winning probability and δ the error tolerance from Protocol BRE. If we
treat ϵs, ϵα, dim(Ai), δ,Max(g), and Min(g) as constants, then c1 = O(1/

√
γ) and c0 = O(1).

Furthermore, if there exists a quantum strategy that wins the game G with probability ωexp, there
is an honest behaviour of Alice and Eve for which Pr[Ω] ≥ 1− exp(− δ2

1−ωexp+δγn).

Proof. We will show that we have the necessary conditions to use Corollary 5.3.3. Firstly, we
need the sequence of channels Ni to satisfy the two required conditions. In order to check the
non-signalling condition, we need to define a channel Ri ∈ CPTP (Ei−1, Ei): in the first step
Ri samples Ti, Xi and Yi exactly as in Step 1 of the protocol, so as to have the same results.
After that it executes the part of Eve, which only requires Yi and Ei−1, since Ri−1 cannot affect
the system because of the no communication requirement. Thus, TrAiRiCi ◦ Ni = Ri ◦ TrRi−1 .
Furthermore, Ci is a deterministic function of the variables Xi, Yi, Ai and Bi, so it is easy to see
that the second condition holds, as well.

Afterwards, we need to construct a min-tradeoff function. We define Ni = γN test
i + (1 −

γ)N data
i , with N test

i always picking Ti = 1 and N data
i always picking Ti = 0. Then, using Lemma

A.0.1 and the condition Max(g) = g(δ1) we get the function

f(δ0) = g(δ1) +
1

γ
(g(δ0)− g(δ1)),

f(δ1) = f(δ⊥) = g(δ1)

which is an affine min-tradeoff function for {Ni}.
Then, since the event Ω is a subset of the random variable Cn and cn ∈ Ω if and only if

freq(cn)(0) ≤ (1− ωexp + δ)γ because of the abort condition, we get (denoting p = freq(cn) for
short):

f(freq(cn)) = p(0)f(δ0) + (1− p(0))f(δ1) =
p(0)

γ
g(δ0) +

(
1− p(0)

γ

)
g(δ1) ≥ h,

The last inequality holds because g is affine (for any λ ∈ [0, 1] and x1, x2, λg(x1)+(1−λ)g(x2) =
g(λx1 + (1 − λ)x2)) and the distribution p′(0) = p(0)/γ, p′(1) = 1 − p(0)/γ satisfies p′(0) ≤
1 − ωexp + δ. Thus, from Corollary 5.3.3 gives us Equation 5.6. We can obtain c1, c0 from the
expressions in Corollary 5.3.3.

Finally, we need to show that the honest strategy for both players will only fail with small
probability. We define the random variable Fi by Fi = 1 if Ci = 0, and Fi = 0 otherwise. If both
players play the game honestly, they win with probability ωexp, hence E[Fi] = (1 − ωexp)γ. So
using the Chernoff bound and the abort condition, we have

Pr[abort] = Pr

[
n∑

i=1

Fi > (1− ωexp + δ) · γn

]
=

Pr

[
n∑

i=1

Fi >

(
1 +

δ

1− ωexp

)
· E

[
n∑

i=1

Fi

]]
≤ e

− δ2

1−ωexp+δ
γn

The only missing part of the proof is finding the function g from the statement of the Theorem
5.4.1. In [20], they show that there is such a function for the CHSH game such that we can
generate Ω(n) bits with a polylog(n) seed. However, for our purpose here, we can use whichever
function that expands an m-bits seed to Ω(m2) uniformly random bits.



CHAPTER 5. INFINITE RANDOMNESS EXPANSION 42

5.5 Infinite Randomness Protocol

Next, we will analyze the protocol for Infinite Randomness Expansion with 3 devices, which we
call IE3.

Infinite Randomness Expansion Protocol with 3 devices (IE3)
Protocol arguments

• The BRE Protocol for Blind Randomness Expansion, which is executed by 2 quantum
devices, the first one which is the main device (denoted as Alice in the BRE protocol) and
the second one which is the "blind" device and has no side information about the output
randomness (denoted as Eve in the BRE protocol)

• 3 quantum devices D1, D2, D3

• 3 ordered clusters of the devices C1 = (D1, D2), C2 = (D2, D3), C3 = (D3, D1) (with
ordered we mean that the first device has a different function from the second one)

• A (close to) uniformly random string r0 of m bits

Protocol steps
For rounds i = 1, 2, ... until the desired amount of randomness is generated, the referee performs
the following steps:

1. They set j = i (mod 3). Then they use the generated random string ri−1 from the previous
round to produce new inputs for the BRE subprotocol. If i = 1, they use the initial seed
instead.

2. The referee executes the BRE subprotocol using the input produced for the cluster Cj . The
first device of the cluster is the main device (the one that they take the output randomness
from) and the second device is the "blind" device (the one that they want to hide the
output from).

3. They use a randomness extractor to convert the output of the first device to a uniformly
random string ri (it is uniformly random for the other 2 devices and any quantum adver-
sary).

We use the function g(m) for the length of the output randomness of the BRE subprotocol
on a seed with length m and g(k)(m) to denote the k-fold composition of g(m) (i.e. g(1)(m) =

g(m), g(2)(m) = g(g(m)), etc.).
We proceed with proving a theorem for the completeness of the protocol and a theorem for

its soundness.

Theorem 5.5.1. (Completeness of the IE3 protocol) Suppose we execute the protocol
IE3(C, S) with C = {D1, D2, D3} and S being a uniformly random m-bit seed that is secure
against D1, D2, D3. Then, there exists a quantum strategy for the devices, where the devices play
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Figure 5.2: The protocol for infinite randomness with 3 devices: at each round the referee
executes the BRE subprotocol with one pair (cluster) of devices, from one of which the output

randomness is hidden (half-black box), so the referee can use it for the next round.
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honestly and do not communicate, such that the probability that the referee aborts in any round
i of the protocol is at most exp(−Ω(m)).

Proof. In every round the pair that executes the protocol uses the ideal CHSH strategy to pass
the BRE subprotocol. For a fixed round i, we have from Theorem 5.4.1 that the probability that
the devices playing fail in the BRE subprotocol is at most exp(−Ω(mi)), where mi = g(i)(m).
Thus, by the union bound, the probability of the referee aborting any round i is at most

∞∑
i=0

exp(−Ω(mi)) =

∞∑
i=0

exp(−Ω(g(i)(m))) ≤ exp(−Ω(m))

where we used that g(m) = Ω(m2) for the last inequality. So, the completeness holds for any
large enough expansion g(m).

Before continuing with the soundness, we need some extra definitions for the convenience of
the proof.

Definition 5.5.2. (cq-state) A classical-quantum state (or cq-state) is the composition (using
the tensor product) of two systems with one being classical (the density matrix has nonzero
elements only in the main diagonal) and one being quantum. If X is the classical system (or
equivalently a random variable) and E is the quantum one, then the density matrix of the cq-state
is

ρXE =
∑
x

px |x⟩ ⟨x| ⊗ ρxB

where px is the probability of the event X = x and {|x⟩} is an orthonormal basis.

We denote with Um the density matrix of the uniformly random variable over all strings with
length m. It holds that Um = 2−mI2m .

Definition 5.5.3. (trace norm) For a matrix A, we define its trace norm as ∥A∥tr =
1
2

√
A∗A

We can use the trace norm of the difference of two density matrices as a measure of their
proximity.

We can use these definitions to provide a different way to describe smoothness. The cq-state
σ = Um ⊗ ρE is a state with a uniform random variable of m bits and a system for a quantum
adversary E, which cannot extract any side information about the outcome of X. So, the state
σ has min-entropy H∞(X|E) = m. Our goal is to generate a state that is ϵ-close to this state
(so we can have Hϵ

∞(X|E) = m), thus we define the notion of ϵ-security, which is similar to
ϵ-smoothness:

Definition 5.5.4. (Secure cq-state) If E is a quantum adversary system and ρXE a cq-state
with X being the classical output of a randomness expansion protocol, then X is ϵ-secure against
E if and only if ∥∥ρXE − U|X| ⊗ ρE

∥∥
tr
≤ ϵ.

We will use this notion of security to prove the soundness of the IE3 protocol. This is the
main technical contribution of the thesis and is inspired by the corresponding proof from Coudron
and Yuen [17].
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Theorem 5.5.5. (Soundness of the IE3 protocol) Let D1, D2, D3 be 3 non-signaling quan-
tum devices. Alice executes the IE3(C, S) protocol with C = {D1, D2, D3} and S an m-bit seed.
We define WINi to be the event that the referee did not abort the IE3 protocol in the i-th round,
and WIN≤i =WIN1∧ ...∧WINi. Let E be the eavesdropper system that may be entangled with
D1, D2, D3, but cannot communicate with them and ρ0SC be the initial state of the seed and the
devices. If ρ0SC = Um ⊗ ρ0C (uniformly random for the devices), and Pr(WIN≤n) ≥ ϵa for all
n ∈ N (ϵa is the soundness of the BRE subprotocol), then∥∥∥ρnXnE − Ug(n)(m) ⊗ ρnE

∥∥∥
tr
≤ 2ϵ1

ϵa
,

where

• ϵ1 is the smoothness for the first execution of the BRE subprotocol and

• ρnXnE
denotes the joint state of the register Xn that holds the output randomness and the

system of the eavesdropper after n rounds of the IE3(C, S) Protocol, conditioned on the
event WIN≤n.

For the proof of the Theorem 5.5.5, we take for granted the correctness of the BRE subprotocol
(Theorem 5.4.1), so we have that for any round i the output of the cluster Ci (where Ci denotes
the cluster Ci (mod 3)) is approximately secure against the next cluster Ci+1. Thus, using the
Equivalence Lemma, since BRE is a Physical Randomness Extractor protocol, it is possible to
compose the executions of BRE by consecutive clusters and to produce nearly uniform output
at each round. Moreover, the approximation errors accumulate linearly with each iteration.

Proof. Define j := i (mod 3). From Bayes’ Rule, we can split the overall probability of success,
p = Pr(WIN≤k), into conditional probabilities pi = Pr(WINi|WIN≤i−1), so as to have p =∏
pi ≥ ϵa. We also define recursively a function δ(i) to operate as an error bound, such that

δ(i) := ϵs(g
(i−1)(m)) + δ(i − 1)/pi = ϵi + δ(i − 1)/pi and δ(1) := ϵs(m). With ϵs(m) we denote

the smoothness of the BRE subprotocol on input with length m or in other words how close the
final state is to a state which is uniformly random.

For the desired result, there must exist a state µiXDiCi+1E
for every i = 1, ..., k− 1, such that

µiXCi+1E
= Ug(i)(m) ⊗ µiCi+1E

and ∥∥ρiXiCE − µiXiCE

∥∥
tr
≤ δ(i),

where the state ρiXiCE is taken conditioned on WIN≤i.
We will prove this by induction:
For k = 1, we use Theorem 5.4.1 with D = D1 and the adversary Eve to be C2 and E

together. Thus, we obtain that there exists a state µ1X1CE such that µ1X1C2E
= Ug(m) ⊗ µ1C2E

,
and ∥∥ρ1X1CE − µ1X1CE

∥∥
tr
≤ ϵs(m) = δ(1).

Using this as the base case, we suppose that after running k − 1 rounds of the protocol our
hypothesis holds. Due to the Equivalence Lemma (5.2.3), the input to cluster Ck for running the
k-th round of the protocol (the BRE subprotocol) needs to be uniformly random for the cluster
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Ck, which is true by the hypothesis. Hence, we can use again Theorem 5.4.1 along with Lemma
A.0.2 to conclude that there exists a state µkXkCE such that µkXCk+1E

= Ug(k)(m) ⊗ µkCk+1E
and∥∥∥ρkXkCE − µkXkCE

∥∥∥
tr
≤ ϵs(g

(k−1)(m)) + δ(k − 1)/pk := δ(k).

So, the induction argument is complete. We bound δ(k) by:

δ(k) = ϵk +
1

pk

(
ϵk−1 +

1

pk−1
(ϵk−2 + ...)

)
≤ 1

ϵa
(ϵk + ϵk−1 + ...+ ϵ1) ≤

2ϵ1
ϵa

where we used that
∏
pi ≥ ϵa and for each ϵi (the smoothness of BRE subprotocol in round i)

it holds that ϵi ≤ 2ϵi−1 (we can modify the parameters of Theorem 5.4.1 to have this relation).
Finally, for every k, we have that∥∥∥ρkXkE

− Ug(k)(m) ⊗ ρkE

∥∥∥
tr
≤
∥∥∥ρkXkE

− µkXkE

∥∥∥
tr
+
∥∥∥µkXkE

− Ug(k)(m) ⊗ ρkE

∥∥∥
tr

≤ δ(k) +
∥∥∥Ug(k)(m) ⊗ µkE − Ug(k)(m) ⊗ ρkE

∥∥∥
tr
= δ(k) +

∥∥∥µkE − ρkE

∥∥∥
tr
≤ 2δ(k).

where for the last inequality we used that tracing over some subsystems on a density matrix only
reduces its trace norm, and the proof is complete.
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Lemmas

The first lemma is taken from [37]:

Lemma A.0.1. Suppose Mi ∈ CPTP (Ri−1Ei−1, CiAiRiEi) are channels with the same condi-
tions as in Theorem 5.3.2 that are of the form:

Mi = γMtest
i,Ri−1Ei−1→CiAiRiEi

+ (1− γ)Mtest
i,Ri−1Ei−1→AiRiEi

⊗ |⊥⟩ ⟨⊥|Ci

where we extended alphabet C to C′ = C ∪ {⊥}. Also, let the affine function g : P(C′) → R satisfy
for any q ∈ P(C′) and any index i:

g(q) ≤ min
ω∈S(Ri−1Ei−1Ẽi−1

{H(Ai|EiẼi−1)Mi(ω) : (Mi(ω))Ci = q}

where Ẽi−1 ≡ Ri−1Ei−1 is a purifying system. Then, we can define a new affine function
f : P(C) → R by

f(δx) =Max(g) +
1

γ
(g(δx)−Max(g)) ∀x ∈ C′

f(δ⊥) =Max(g)

Then, the function f is a min-tradeoff function for {Mi} with properties:

Max(f) =Max(g)

Min(f) =

(
1− 1

γ

)
Max(g) +

1

γ
Min(g)

MinΣ(f) ≥Min(g)

V ar(f) ≤ 1

γ
(Max(g)−Min(g))2.

47
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The second lemma is taken from [17]:

Lemma A.0.2. Suppose we have a randomness expansion protocol P with F being a binary
register with value 1 if the referee does not abort, S the register of the seed, X the register of
the outcome, D the device used in the protocol and E an arbitrary quantum system that may be
entangled with D. We also have the density matrix σFSX := |0⟩ ⟨0|F ⊗ U|S| ⊗ |0⟩ ⟨0|X .

We also define the quantum operation F and E. E is some unitary map applied to the state
ρFSXD, which represents the actions of the protocol P , and F takes the state ρFSXD and out-
puts the state ρXD|F=1, which results from the post-measurement state of ρFSXD conditioned on
measuring |1⟩ in F and tracing out F and S.

Furthermore, suppose that for all states σFSXDE that σFSXD = σFSX⊗σD holds, there exists
a state τXDE such that τXE = U|X| ⊗ σE and

∥FE ⊗ IE(σFSXDE)− τXDE∥tr ≤ ϵ

Let δ, λ > 0 and ρiFSXDE the initial state of the system such that
∥∥ρiFSXDE − σFSXDE

∥∥
tr
≤ δ.

If the probability of measuring 1 in the F register of the state E ⊗ IE(ρiFSXDE) is at least λ, then
there exists a state µXDE with µXE = U|X| ⊗ µE and∥∥∥ρfXDE − µXDE

∥∥∥
tr
≤ ϵ+ δ/λ

where ρfXDE = FE ⊗ IE(ρiFSXDE) is the final state.

The intuition behind this lemma is that if the execution of the protocol with a uniformly
random seed obtains a state with a random output that is ϵ-close to uniform, then a seed which
is δ-close to uniform obtains the same output, but with the additive factor of δ/λ in the trace
distance, where λ is the probability of not aborting.
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