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The purpose of this project is to introduce the notions of the fundamental
group and the universal covering, especially in the case of Lie groups, which
combine geometric with algebraic properties. In particular, after introducing
Lie groups and Lie algebras, the fundamental group and covering maps, we
prove that all connected Lie groups that have the same Lie algebra are the
quotient of the unique simply-connected Lie group that corresponds to this
algebra, with any of its discrete normal subgroups. This result is remarkable,
since it links the geometric structure of a Lie group with its algebraic structure.
Finally, we apply these results to prove that SU(2) is the universal covering of
SO(3), which is generated by the quotient of SU(2) with its center.

1 Lie Groups and Lie Algebras

1.1 Lie Groups

Definition 1.1 (Lie Groups). A Lie group is a smooth manifold G together
with a group structure on it such that the map

G×G→ G (g, h) 7→ g · h−1

is smooth.

Examples:

1. (R,+) is a commutative Lie group.

2. The unit circle on the complex plane is also a commutative Lie group.

3. The general linear group GL(n,K) is the group of invertible n × n
matrices with entries in the field K = C,R. GL(n,K) is a Lie group with
the group operation of known matrix multiplication.

Next, we define two important subgroups of GL(n,K) that will concern us
in this project.
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4. The orthogonal group O(n) is the subgroup of GL(n,R) with matrices
that satisfy

M ·MT = I.

O(n) is the group of distance-preserving transformations of a Euclidean
space of dimension n that preserve a fixed point. The dimension of O(n)

is n(n−1)
2 .

The special orthogonal group SO(n) is a normal subgroup of O(n),
such that

SO(n) = {M ∈ O(n) : detM = 1}.

SO(n) is also a Lie group with dimSO(n) = dimO(n) = n(n−1)
2 . In

dimensions 2 and 3, SO(2) and SO(3) are the sets of rotations around a
point and a line, respectively.

5. The unitary group U(n) is the subgroup of GL(n,C) with matrices that
satisfy

M ·M∗ = I,

where M∗ denotes the conjugate transpose of M . The dimension of U(n)
is n2.

The special unitary group SU(n) is a normal subgroup of U(n), such
that

SU(n) = {M ∈ U(n) : detM = 1}.
An alternative definition for this is that SU(n) is the kernel of the group
homomorphism det : U(n) → U(1) ∼= S1. The dimension of SU(n) is thus
n2 − 1.

Definition 1.2 (Lie group homomorphism). If G and H are Lie groups, a
Lie group homomorphism from G to H is a smooth map F : G → H that
is also a group homomorphism.

A Lie group homomorphism F : G → H is called a Lie group isomor-
phism, if it is also a diffeomorphism, which means that it has an inverse which
is also a Lie group homomorphism. In this case we say that G and H are
isomorphic Lie groups.

Theorem 1.3. Every Lie group homomorphism F : G −→ H has constant rank.

Proof. Let e ∈ G denote the identity element of G and g0 ∈ G be an arbitrary
element. Then, we can define a smooth action called left translation Lg as
Lg(h) = g · h, which is a diffeomorphism. Using this, we will show that (F∗)g0
has the same rank as (F∗)e.

We have that ∀g ∈ G:

F ◦ Lg0(g) = F (g0g) = F (g0)F (g) = LF (g0)F (g) = LF (g0) ◦ F (g)

Shortly, F ◦Lg0 = LF (g0) ◦F . Taking the differential of both sides at e, we get:

(F∗)g0 ◦ (Lg0)e = (LF (g0)∗)F (e) ◦ (F∗)e
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But Lg is a diffeomorphism, so its differential is isomorphism. Furthermore,
we know that compositition with an isomorphism does not change the rank, so
finally we get: rank(F∗)g0 = rank(F∗)e, as we wanted.

Lemma 1.4. Every continuous homomorphism of Lie groups is smooth.

Proof. Let Φ : G −→ H be a continuous homomorphism. Then ΓΦ = {(g,Φ(g) :
g ∈ G} is a Lie subgroup of G×H.

The projection p : ΓΦ
i−→ G × H

pr1−−→ G is a bijective, smooth Lie homo-
morphism, so from Theorem 1.3, p∗ has constant rank. This means that p is a
diffeomorphism, thus Φ = pr2 ◦ p−1 is smooth.

1.2 Lie Algebras

In the previous proof we defined the left translation diffeomorphism Lg of a Lie
group G. A vector field X ∈ X(G) is then called left-invariant, if it is invariant
under all left translations, which means

d(Lg)h(Xh) = Xgh ∀g, h ∈ G⇒ (Lg)∗X = X ∀g ∈ G

Since (Lg)∗(aX + bY ) = a(Lg)∗X + b(Lg)∗Y , the set of all smooth left-
invariant vector fields on G is a linear subspace of X(G). It is also closed under
Lie brackets, because

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ],

where the first equality comes from the naturality of the Lie bracket. So, we
have the following definition:

Definition 1.5 (Lie Algebra). The set of all left-invariant vector fields of G is
denoted by Lie(G) or g and it is called the Lie algebra of the Lie Group G. It
is a subalgebra of X(G), so the Lie bracket satisfies the properties of bilinearity,
antisymmetry and the Jacobi identity.

Proposition 1.6. The dimension of Lie(G) is equal with the dimension of the
corresponding group G.

Proof. We will show equivalently that Lie(G) ∼= TeG. We define the evaluation
map ϵ : Lie(G) → TeG by ϵ(X) = Xe. This map is linear over R by definition
and it is injective, because if ϵ(X) = Xe = 0, then Xg = Xge = d(Lg)e(Xe) = 0,
∀g ∈ G, so X = 0.

It suffices to show that ϵ is surjective. Let v ∈ TeG. We define a new vector
field vL on G by

vLg = d(Lg)e(v).

The vector field vL is smooth, since Lg is smooth. It is sufficient to show
that vLf is smooth for any smooth function f ∈ C∞(G). We choose a smooth
curve γ : (−δ, δ) → G, such that γ(0) = e and γ′(0) = v. Then ∀g ∈ G:

(vLf)(g) = vLg f = d(Lg)e(v)f = v(f ◦Lg) = γ′(0)(f ◦Lg) =
d

dt
(f ◦Lg◦γ)(t)|t=0.
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Defining ϕ : (−δ, δ)×G→ R by ϕ(t, g) = f ◦Lg ◦ γ(t) = f(gγ(t)), we have that
vLf(g) = ∂ϕ/∂t(0, g). Since f , γ and the group multiplication are smooth, we
conclude that ∂f/∂t(0, g) is smooth on g, so vLf is smooth.

Furthermore, since we have Lh ◦ Lg = Lhg, we get that

d(Lh)g(v
L
g ) = d(Lh)g ◦ d(Lg)e(v) = d(Lh ◦ Lg)e(v) = d(Lhg)e(v) = vLhg.

As a result (Lh)∗v
L = vL, ∀h ∈ G, so vL is left-invariant.

Finally, we have that vL ∈ Lie(G) and ϵ(vL) = vLe = v for any v ∈ TeG, so
ϵ is surjective.

The isomorphism Lie(G) ∼= TeG is very important, so from now on, we will
use it in many proofs.

2 Homotopy and Fundamental Group

2.1 Definition

Definition 2.1 (Homotopy). We define as a path in a topological space X a
continuous map γ : [0, 1] −→ X. A homotopy of paths in X is a family of paths
γt : [0, 1] −→ X, 0 ≤ t ≤ 1, such that:

1. The endpoints γt(0) = x0 and γt(1) = x1 are independent of t.

2. The associated map F : [0, 1] × [0, 1] −→ X defined by Γ(s, t) = γt(s) is
continuous.

If two paths γ0 and γ1 are connected in this way by a homotopy γt, they are
said to be homotopic. We denote that as γ0 ∼ γ1.

Proposition 2.2. The relation of homotopy on paths with fixed endpoints in
any space is an equivalence relation. The equivalence class of a path γ under the
equivalence relation of homotopy is denoted [γ] and called the homotopy class
of γ.

Proof. The property of reflexivity is evident, because γ ∼ γ by the constant
homotopy γt = γ. Symmetry is also easy, since if γ0 ∼ γ1 by the homotopy γt,
then γ1 ∼ γ0 by the homotopy γ1−t.

For transitivity, we assume that γ0 ∼ γ1 by γt and η0 ∼ η1 by ηt with
γ1 = η0. Then γ0 ∼ η1 by the homotopy ht that is equal with γ2t for t ∈ [0, 1/2]
and with η2t−1 for t ∈ [1/2, 1]. The homotopy ht is continuous, since both of
its components are continuous and they agree on the intersection t = 1/2 from
γ1 = η0.

We can generalise the notion of homotopy from paths to general maps.

Definition 2.3 (Homotopic Maps). Let X,Y be two topological spaces.
Two continuous maps f0, f1 : X −→ Y are said to be homotopic if there exists a
continuous map

F : [0, 1]×X −→ Y (t, x) 7→ Ft(x),

such that, Fi ≡ fi for i = 0, 1. Similarly to paths, we denote that as f0 ∼ f1.
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2.2 Fundamental Group

We begin with the definition of an operation on paths, so as to see how we can
create a group in a space, which characterises it.

Definition 2.4. Given two paths γ, η : [0, 1] −→ X such that γ(1) = η(0), we
define the composition or product path γ · η that traverses first γ and then
η, defined by the formula

(γ · η)(s) =

{
γ(2s), 0 ≤ s ≤ 1/2

η(2s− 1), 1/2 ≤ s ≤ 1

It is easy to see that if γ0 ∼ γ1 and η0 ∼ η1, then γ0 · η0 ∼ γ1 · η1 using the
homotopy γt · ηt.

Definition 2.5 (Fundamental Group). A path γ : [0, 1] −→ X with the same
starting and ending point γ(0) = γ(1) = x0 ∈ X is called a loop, and the
common starting and ending point x0 is called the basepoint of the loop.

The set of all homotopy classes of loops with the basepoint x0 is denoted
π1(X,x0) and it is a group with respect to the product [γ] · [η] = [γ · η]. The
group π1(X,x0) is called the fundamental group of X at the basepoint x0.

Proof. The product [γ] · [η] = [γ ·η] is well-defined, because if γ0 ∼ γ and η0 ∼ η,
then γ0 · η0 ∼ γ · η using the homotopy γt · ηt. For the associativity property, if
we are given γ, η, µ paths with γ(1) = η(0) and η(1) = µ(0), then it is easy to
construct a homotopy between (γ · η) · µ and γ · (η · µ), so (γ · η) · µ ∼ γ · (η · µ).
Restricting that to loops at basepoint x0, we get that π1(X,x0) is associative.

We now define the identity of the group, which is the constant loop c :
[0, 1] −→ X, c(t) = x0. Then, for any path γ : [0, 1] −→ X, γ · c ∼ c · γ via a
reparametrisation of the paths.

Finally, for a path γ : [0, 1] −→ X from x0 to x1, we define the inverse path
γ− from x1 to x0 by γ−(s) = γ(1 − s). We see that γ · γ− is homotopic to
the constant loop taking the homotopy ht = γt · γ−t , where γt equals γ in the
interval [0, 1− t] and is stationary afterwards. So, restricting that to loops, we
have that γ · γ− ∼ c⇒ [γ] · [γ−] ∼ [c].

We will see that if X is path-connected, then the group π1(X,x0) is inde-
pendent of the choice of basepoint x0, up to isomorphism. So, we can talk about
the fundamental group of the space X, denoted π1(X).

Proposition 2.6. If the points x0, x1 ∈ X are path-connected, then π1(X,x0) ∼=
π1(X,x1).

Proof. Since X is path-connected, there is a path h from x0 to x1. So, taking
a loop γ at the basepoint x0, we can have the loop h · γ · h− ∼ (h · γ) · h− ∼
h · (γ · h−) at the basepoint x1. Therefore, we can define the homomorphism
βh : π1(X,x0) −→ π1(X,x1), with [γ] 7→ [h · γ · h−], which is well-defined, since
if γt is a homotopy of loops based at x0, then h · γt · h− is a homotopy of loops
based at x1, and inversely.
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We see that βh is a homomorphism, since βh([γ · η]) = [h · γ · η · h−] =
[h · γ · h− · h · η · h−] = βh([γ]) · βh([η]). Furthermore, it is an isomorphism with
inverse βh− , because βh ◦ βh−([γ]) = βh([h

− · γ · h] = [h · h− · γ · h · h−] = [γ],
and similarly βh− ◦ βh([γ]) = [γ].

The fundamental group is a property that characterises a space. A signig-
icant class of spaces is that of the spaces with trivial fundamental group. We
will see that in these spaces all the paths from a point to another are equivalent,
concerning homotopy.

Definition 2.7 (Simply-connected Space). A path-connected space X is
called simply-connected, if its fundamental group is trivial.

Proposition 2.8. A space X is simply-connected if and only if there is a unique
homotopy class of paths connecting any two points in X.

Proof. If γ and η are two paths in the simply-connected space X from x0 to x1,
then γ ∼ γ · cx1

∼ γ · η− · η ∼ cx0
· η ∼ η, since η− · η and γ · η− are loops at

basepoints x1 and x0 respectively, so homotopic to constant loops. Conversely, if
there is only one homotopy class of paths connecting a basepoint x0 to itself, then
all these loops are homotopic to the constant loop, thus π1(X,x0) is trivial.

Finally, we have a definition and a theorem, concerning the fundamental
group, which will be useful later.

Definition 2.9. (Induced Homomorphism). Let ϕ : X −→ Y be a map
of topological spaces taking the basepoint x0 to the basepoint y0 ∈ Y . Then
ϕ induces a homomorphism ϕ∗ : π1(X,x0) −→ π1(Y, y0), defined by composing
loops γ : [0, 1] −→ X based at x0 with ϕ, which means ϕ([γ]) = [ϕ ◦ γ].

This induced homomorphism ϕ∗ is well defined, because a homotopy of loops
based at x0, γt yields a composed homotopy ϕ ◦ γt of loops based at y0, so
ϕ∗([γ0]) = [ϕ ◦ γ0] = [ϕ ◦ γ1] = ϕ∗([γ1]). Moreover, it is a homomorphism, since
ϕ ◦ (γ · η) = (ϕ ◦ γ) · (ϕ ◦ η) and both functions have the value (ϕ ◦ γ)(2s) for
s ∈ [0, 1/2] and the value (ϕ ◦ η)(2s− 1) for s ∈ [1/2, 1].

A basic property of induced homomorphisms is (ϕ ◦ψ)∗ = ϕ∗ ◦ψ∗. It is easy
to prove this, since the composition of maps is associative ((ϕ◦ψ)(γ) = ϕ(ψ(γ)).

The last theorem concerns the fundamental group of topological manifolds.

Theorem 2.10. The fundamental group of a topological manifold is countable.

Proof. Let X be a topological manifold. By Lemma 1.10 in Lee[4], there is a
countable collection B of coordinate balls covering X. For any pair of coordinate
balls B,B′ ∈ B the intersection B∩B′ has at most countably many components,
each of which is path-connected. Let X be a countable set containing a point
from each component of B ∩ B′ for each B,B′ ∈ B (including B = B′). For
each B ∈ B and each x, x′ ∈ X , such that x, x′ ∈ B, let hBx,x′ be some path from
x to x′ in B.
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Since the fundamental groups based at any two points in the same component
of X are isomorphic (from proposition 2.6), and X contains at least one point
in each component of X, we may as well choose a point p ∈ X as basepoint.
Define a special loop to be a loop based at p that is equal to a finite product of
paths of the form hBx,x. Clearly, the set of special loops is countable, and each
special loop determines an element of π1(X, p). Therefore, to show that π1(X, p)
is countable, it suffices to show that each element of π1(X, p) is represented by
a special loop.

Let γ : [0, 1] −→ X be a loop based at p. The collection of components of
sets of the form γ−1(B) as B ranges over B is an open cover of [0, 1], so by
compactness it has a finite subcover. Thus, there are finitely many numbers
0 = s0 < s1 < ... < sm = 1 such that [si−1, si] ⊆ γ−1(B) for some B ∈ B. We
denote the ball B containing γ([si−1, si]) by Bi and let γi be the path obtained
by restricting γ to [si−1, si]. Then, it is easy to see that γ is the composition of
γ1, ..., γm with γi a path in Bi.

For each i, we have that γ(si) ∈ Bi ∩ Bi+1 and there is some xi ∈ X that
lies in the same component of Bi ∩ Bi+1 as γ(si). So, we can choose a path ηi
in Bi ∩Bi+1 from xi to γ(si) ∈ Ai ∩Ai+1. Hence, we can consider the loop

(γ1 · η−1 ) · (η1 · γ2 · η
−
2 ) · (η2 · γ3 · η

−
3 ) · ... · (ηm−1 · γm)

which is homotopic to γ, if we erase η−i with ηi. But each of the parentheses is
a path in Bi from xi−1 to xi and Bi is simply connected, so it is homotopic to
hBi
xi−1,xi

. Therefore, γ is a special loop.

2.3 Example: Calculation of a Fundamental Group

As an example, we will calculate the fundamental group of the sphere Sn for
n ≥ 2. For the case n = 1, we need the notion of the covering map, which is
introduced at the next section. We need the following lemma:

Lemma 2.11. If a space X is the union of a collection of path-connected open
sets Aa each containing the basepoint x0 ∈ X and if each intersection Aa ∩ Ab

is path-connected, then every loop in X with basepoint x0 is homotopic to a
product of loops each of which is contained in a single Aa.

Proof. For this proof we use the same technique as in the previous proof in a
most general sense. Given a loop γ : [0, 1] −→ X at the basepoint x0, we claim
that there is a partition 0 = s0 < s1 < ... < sm = 1 such that each subinterval is
mapped by γ to a single Aa. We can do that, because γ is continuous, thus each
s ∈ [0, 1] has an open neighbourhood Vs ⊂ [0, 1] mapped by γ to Aa. We can
select Vs such that its closure is mapped to a single Aa. But [0, 1] is compact,
so a finite number of these intervals can cover [0, 1]. The endpoints of these
intervals define the desired partition.

We denote the sets Aa containing γ([si−1, si]) by Ai and let γi be the path
obtained by restricting γ to [si−1, si]. Then, it is easy to see that γ is the
composition of γ1, ..., γm with γi a path in Ai. However, we assummed that
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Ai ∩ Ai+1 is path-connected, so we can choose a path ηi in Ai ∩ Ai+1 from x0
to γ(si) ∈ Ai ∩Ai+1. Hence, we can consider the loop

(γ1 · η−1 ) · (η1 · γ2 · η
−
2 ) · (η2 · γ3 · η

−
3 ) · ... · (ηm−1 · γm)

which is homotopic to γ, if we erase η−i with ηi. But each of the parentheses is
a loop lying in a single Ai, so the initial loop is homotopic to a product of such
loops.

Theorem 2.12. The fundamental group of the sphere, π1(S
n), for n ≥ 2 is

trivial.

Proof. We can take two open sets of the sphere Sn, A1 and A2, which are the
complements of two antipodal points, each of which are homeomorphic to Rn

by the stereographic projection. Since n ≥ 2, A1 ∩ A2 is path-connected. So,
choosing a basepoint x0 ∈ A1 ∩ A2, we apply the previous lemma. Hence, we
have that every loop in Sn based at x0 is homotopic to a product of loops in A1

and A2. But π1(A1) and π1(A2) are trivial, since A1 and A2 are homeomorphic
to Rn. Therefore, every loop in Sn is homotopic to the constant loop, so its
fundamental group is trivial.

3 Covering Group

3.1 Covering Space and Covering Manifold

We begin with the definitions of covering space and covering manifold, so we
can apply this notion to Lie groups.

Definition 3.1. • Let X,Y be two path-connected topological spaces. A
surjective continuous map π : X → Y is a covering map if ∀y ∈ Y , there
exists an open neighbourhood U of y in Y , such that π−1(U) is a disjoint
union of open sets Vi ⊂ X, each of which is mapped homeomorphically
onto U by π. Such a neighbourhood is called an evenly covered neigh-
bourhood. The sets Vi are called the sheets of π. The set π−1(y) is
called the fiber over y.

• A covering space of a topological space Y is a topological space X,
together with a covering map π : X → Y . If X is simply-connected (its
fundamental group is trivial), then it is called the universal covering
space of Y .

• Let X,Y be two connected smooth manifolds. A smooth map π : X → Y
is a smooth covering map, if it is a topological covering map, but for
any y ∈ Y and a neighbourhood U of y, any open component of π−1(U)
is mapped diffeomorphically onto U by π.

• If π : X → Y is a smooth covering map, then Y is called the base of
the covering and X is called a covering manifold of Y . If X is simply-
connected, then it is called the universal covering manifold of Y .
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We have the following properties for smooth covering maps:

1. Every smooth covering map is a local diffeomorphism.

2. Every smooth covering map is a smooth submersion, an open map and a
quotient map.

3. Every smooth covering map π : X −→ Y has constant rank with rank(π∗) =
dimX = dimY . Also, every point of X is regular.

4. An injective smooth covering map is a diffeomorphism.

5. A topological covering map is a smooth covering map if and only if it is a
local diffeomorphism.

Proof. 1. For every x ∈ X, we have that for a neighbourhood U of π(x),
π−1(U) is a collection of open sets

⋃
Vi, such that π(Vi) = U diffeomor-

phically. But we have that x ∈ π−1(U), so there is always a neighbourhood
of x, which is mapped diffeomorphically to Y .

2. Since π is a local diffeomorphism, from Lee 4.8(a)[4] it is also a smooth
immersion, a smooth submersion and from Lee 4.28 it is an open map and
a quotient map.

3. Since π is a local diffeomorphism, we have that ∀x ∈ X, π∗ : TxX −→
Tπ(x)Y is an isomorphism, so rank(π∗) = dimX = dimY .

4. Since a covering map is also surjective and local diffeomorphism, it is a
bijective local diffeomorphism, so by Lee 4.6(f) it is a diffeomorphism.

5. Since π is a topological covering map, for all points x ∈ X, there is an
open neighbourhood U , such that each connected component of π−1(U) is
homeomorphic to U . If V is one of these components, then π|V is bijective
(from homeomorphism) and local diffeomorphism, thus a diffeomorphism.
So, π is a diffeomorphism with each component of π−1(U), which means
it is a smooth covering map.

Another significant property of covering maps is that we can transfer a con-
tinuous function from the base of the covering to the covering space, which is
called lifting.

3.2 Lifting

Definition 3.2 (Lift). Let π : X −→ Y be a covering map and f : Z −→ Y be
a continuous map. Then a lift of f is a continuous map F : Z −→ X such that
π ◦ F = f .

Lemma 3.3 (Unique Path Lifting). Let π : X −→ be a covering map, γ :
[0, 1] −→ Y a path in Y and x0 a point in the fiber over y0 = γ(0) (x0 ∈ π−1(y0)).
Then there exists at most one lift of γ, Γ : [0, 1] −→ X, such that Γ(0) = x0.
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Proof. We prove that by contradiction. Suppose we have two such lifts Γ1,Γ2 :
[0, 1] −→ X. We take the set

S := {t ∈ [0, 1] : Γ1(t) = Γ2(t)}.

The set S is non-empty, because 0 ∈ S and it is also closed (all its limit points
are in the set, because Γ1,Γ2 are continuous).

So, it suffices to prove that it is also open. We will prove that ∀s ∈ S, there
exists ϵ > 0, such that [s− ϵ, s+ ϵ] ∩ [0, 1] ⊂ S. We will consider only the case
s = 0 for simplicity, but the general case is entirely similar.

So, we want to prove that there exists ϵ > 0, such that [0, ϵ] ⊂ S. We pick
a small open neighbourhood U of x0 such that π restricts to a homeomorphism
onto π(U) (we take the element of π−1(y0) that includes x0). Hence, there exists
an ϵ > 0, such that Γi ⊂ U for i = 1, 2. However, π ◦ Γ1 = π ◦ Γ2 = γ, so since
π is a homeomorphism in U , we take Γ1|[0,ϵ] = Γ2|[0,ϵ].

Thus, S is both open and closed, so S = [0, 1] ⇒ Γ1 = Γ2.

Theorem 3.4 (Unique Lifting). Let π : X −→ Y be a covering map, and
f : Z −→ Y be a continuous map, where Z is a connected space. If we fix
z0 ∈ Z and x0 ∈ π−1(y0), where y0 = f(z0), then there exists at most one lift
F : Z −→ X of f such that F (z0) = x0.

Proof. Let az be a continuous path ∀z ∈ Z that connects z0 to z. If F1, F2

are two lifts of f such that F1(z0) = F2(z0) = x0, then ∀z ∈ Z, the paths
Γ1 = F1(az) and Γ2 = F2(az) are two lifts of the path γ = f(az) that start at
the same point. So, from the previous lemma, we get that Γ1 = Γ2 ⇒ Γ1(1) =
Γ2(1) ⇒ F1(z) = F2(z), ∀z ∈ Z.

So, we have proved uniqueness of lifts. Next, we prove the existence of lifts
for different types of maps.

Theorem 3.5 (Homotopy lifting property). Let π : X −→ Y be a covering
map, f : Z −→ Y be a continuous map and F : Z −→ X be a lift of f . If

h : [0, 1]× Z −→ Y (t, z) 7→ ht(z)

is a homotopy of f (h0(z) ≡ f(z)), then there exists a unique lift of h:

H : [0, 1]× Z −→ Z (t, z) 7→ Ht(z)

such that H0(z) ≡ F (z).

Proof. For each z ∈ Z we can find an open neighbourhood Uz, and a partition
0 = t0 < t1 < ... < tn = 1, depending on z, such that h maps [ti−1, ti] × Uz

into an evenly covered neighbourhood of hti−1
(z). Following this partition, we

can now lift h|[0,1]×Uz
to a continuous map H = Hz : [0, 1]×Uz −→ X such that

H0(ζ) = F (ζ), ∀ζ ∈ Uz.
By unique lifting property, the liftings on [0, 1] × Uz1 and [0, 1] × Uz2 must

agree on [0, 1] × (Uz1 ∩ Uz2), ∀z1, z2 ∈ Z, and therefore we can glue all these
local lifts together to obtain the desired lift H.
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Corollary 3.6 (Path lifting property). Let π : X −→ Y be a covering map,
y0 ∈ Y , and γ : [0, 1] −→ Y is a continuous path starting at y0. Then, ∀x0 ∈
π−1(y0), there exists a unique lift Γ : [0, 1] −→ X of γ starting at x0.

Proof. We use the previous theorem with f : {pt} −→ Y , f(pt) = γ(0) = y0,
its lift F : {pt} −→ X, F (pt) = Γ(0) = x0, and γ(t) = ht(pt), thus we take the
unique lift Γ(t) = Ht(pt).

Corollary 3.7 (Monodromy of the covering). Let π : X −→ Y be a covering
map, and y0 ∈ Y . If γ0 and γ1 are loops based on y0, which are homotopic, then
any lifts Γ0,Γ1, which start at the same point also end at the same point.

Proof. We lift the homotopy γt connecting γ0 to γ1 to a homotopy Γt in X.
By the homotopy lifting property, this lift connects Γ0 to Γ1. Thus, we get a
continuous path Γt(1) inside the fiber π−1(y0), which connects Γ0(1) to Γ1(1).
But since the fibers are discrete, this path must be constant.

Theorem 3.8. Let π : X −→ Y be a covering map, x0 ∈ X and y0 = π(x0).
Then, the induced homomorphism π∗ : π1(X,x0) −→ π1(Y, y0) is injective. The
image subgroup π∗(π1(X,x0)) in π1(Y, y0) consists of the homotopy classes of
loops in Y based at y0 whose lifts to X starting at x0 are loops.

Proof. An element of the kernel of π∗ is represented by a loop F0 : [0, 1] −→ X
with a homotopy ft : [0, 1] −→ X of f0 = π ◦ F0 to the trivial loop f1. From the
path lifting property, every ft is uniquely lifted to a path Ft : [0, 1] −→ X, which
is also a homotopy of paths, since as t varies each endpoint of Ft traces out a
path lifting a constant path, therefore it is a constant path. This homotopy has
F0 the initial path and F1 the unique lift of the constant loop f1, so a constant
loop. Thus, F0 is homotopic to the constant loop and the kernel of π∗ is trivial.
As a result, π∗ is injective.

For the second result, we see that loops at y0 lifting to loops at x0 certainly
represent elements of the image of π∗. Conversely, a loop representing an element
of the image of π∗ is homotopic to a loop having such a lift, so by the homotopy
lifting property, the loop itself must have a lift.

Theorem 3.9 (Existence of lifts). Let π : X −→ Y be a covering map, x0 ∈ X,
y0 = π(x0) ∈ Y , f : Z −→ Y a continuous map and z0 ∈ Z such that f(z0) = y0.
Assuming that the spaces Y and Z are connected, f admits a lift F : Z −→ X
such that F (z0) = x0 if and only if

f∗(π1(Z, z0)) ⊂ π∗(π1(X,x0)).

Proof. ”⇒”
If F is such a lift, then differentiating the relation f = π ◦ F , we get

f∗(π1(Z, z0)) = π∗ ◦ F∗(π1(Z, z0) ⊂ π∗(π1(X,x0)).
”⇐”
For any z ∈ Z, we choose a path γz from z0 to z. Then az = f(γz) is a path

from y0 to y = f(z) (since f is continuous). We denote by Az the unique lift of
az starting at x0, and set F (z) = Az(1).
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We will show that F is a well defined map. Indeed, let γ′ be another path
from z0 to z. Then, f(γ′) · a−z is a loop h0 at y0. But h0 = f(γ′) · f(γz)− =
f(γ′ · γz)−, so [h0] ∈ f∗(π1(Z, z0)) ⊂ π∗(π1(X,x0)). This means that there
is a homotopy ht of h0 to a loop h1 that lifts to a loop H1 in X, based at
x0, with π∗(H1) = h1. Then, from the homotopy lifting property, we get a
lifting Ht of ht. Since H1 is a loop at x0, so is H0. By the uniqueness of lifted
paths, we have that the first half of H0 is the lift of f(γ′), namely Γ′, and the
second half is Az traversed backwards. So, the midpoint is common, therefore
Az(1) = Γ(1) = F (z). This shows that F is well defined.

It suffices to show that F is continuous. Let U ⊂ Y be an open neighbour-
hood of f(z) having a lift Ũ ⊂ X containing F (z) such that π : Ũ −→ U is
a homeomorphism. We choose a path connected open neighbourhood V of z
with f(V ) ⊂ U . For paths from z0 to points z′ ∈ V , we take a fixed path γ
from z0 to z followed by a path η in V from z to z′. Then, the paths f(γ),
f(η) in Y have lifts F (γ), F (η) in X, and f(γ) · f(η) has lift F (γ) · H, where
H = π−1(f(η)) and comes from the inverse of the homeomorphism π : Ũ −→ U .
Thus F (z′) = F (η(1)) = H(1) ∈ π−1(f(η(1))) = π−1(z′), which means that
F (V ) ⊂ Ũ and F |V = π−1 ◦ f , hence F is continuous at z.

Finally, using the notion of lifts, we can define a map from the fundamental
group of a point to its fiber in a covering.

Definition 3.10 (Lifting Correspondence). Let π : X −→ Y be a covering
map, x0 ∈ X a basepoint and y0 = π(x0) ∈ Y . Given an element [γ] of π1(Y, y0),
let Γ be the lifting of γ to a path in X that begins at x0. Let the map

ϕ : π1(Y, y0) −→ π−1(y0)

be such that ϕ([γ]) denotes the endpoint Γ(1). We call ϕ the lifting corre-
spondence derived from the covering map π.

From Theorem 3.7, ϕ is well-defined. We have also a very important result
for the lifting correspondence.

Proposition 3.11. Let π : X −→ Y be a covering map, x0 ∈ X a basepoint
and y0 = π(x0) ∈ Y . If X is path-connected, then the lifting correspondence
ϕ : π1(Y, y0) −→ π−1(y0) is surjective. If X is simply connected, it is bijective.

Proof. Let x ∈ π−1(y0). Then there is a path Γ in X from x0 to x. So, γ = π◦Γ
is a loop in Y at basepoint y0, so ϕ([γ]) = x. Thus, ϕ is surjective.

Suppose X is simply connected. Let [γ], [η] be two elements of π1(Y, y0) such
that ϕ([γ]) = ϕ([η]). We take Γ and H to be their liftings in X respectively
starting at point x0 and ending at the same point x = ϕ([γ]) = ϕ([η]). X is
simply connected, so there is a homotopy Γt between Γ and H, by proposition
2.8. Therefore, π◦Γt is a homotopy between γ and η, which means that [γ] = [η].
So, ϕ is also injective, thus bijective.
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3.3 Application in Fundamental Group

The idea of a covering space is very useful for calculating the fundamental
groups of various spaces. For example in the final chapter, we will calculate
the fundamental group of the Lie group SO(3). We have already calculated the
fundamental group for the sphere Sn, if n ≥ 2. Now, we have the necessary
tools to calculate the fundamental group of the circle S1.

Theorem 3.12. π1(S
1) ∼= Z.

Proof. We construct a covering map of π : R −→ S1 with s 7→ (cos(2πs), sin(2πs)).
This map is surjective and for any open neighbourhood U , π−1(U) is a union
of disjoint open sets in R (with period 1).

So, let γ : [0, 1] −→ S1 be a loop at the basepoint x0 = (1, 0), representing
a given element of π1(S

1, x0). By the path lifting property, there is a lift Γ
of γ that starts at 0 and ends at some integer n, since π(Γ(1)) = γ(1) =
x0 and π−1(x0) = Z. Therefore, since the path lifting is unique, we get a
homomorphism h : π1(S

1, x0) −→ Z, which is well-defined.
To prove that it is surjective, we construct the loops in S1, ωn : [0, 1] −→ S1

with ωn(s) = (cos(2πns)), sin(2πns), which are uniquely lifted to the paths
Ωn(s) = ns, since π ◦ Ωn = ωn. However, Ωn is a path from 0 to an arbitrary
integer n, so we have surjectivity.

It suffices to show that it is injective. We have seen that for any loop γ,
there is a unique lifting path that goes from 0 to n for some n. But also, ωn

is lifted to a path from 0 to n. So, we have that Γ ∼ Ωn by the homotopy
(1 − t)Γ + tΩn, which if it is composed with π gives a homotopy for γ ∼ ωn.
Therefore, if h([γ1]) = h([γ2]) = n, then γ1 ∼ ωn ∼ γ2 ⇒ [γ1] = [γ2].

3.4 Universal Covering

We have already defined universal covering. In this subsection, we will prove
the the existence of it in the case of spaces and manifolds.

Theorem 3.13 (Existence of Universal Covering Map). If X is a con-
nected and locally simply connected topological space, there exists a simply con-
nected topological space X̃ and a covering map π : X̃ −→ X.

Remark. The universal covering space is unique in the following sense: if X̃ ′ is
any other simply connected space that admits a covering map π′ : X̃ ′ −→ X,
then there exists a homeomorphism Φ : X̃ −→ X̃ ′ such that π′ ◦Φ = π. However,
we will not prove this result.

Proof. We construct such a covering space. Given a basepoint x0, we define

X̃ = {[γ]| γ : [0, 1] −→ X, γ(0) = x0}

where [γ] denotes the homotopy classes γ with respect to homotopies that fix
endpoints γ(0) and γ(1). Then, the map π : X̃ −→ X with [γ] 7→ γ(1) is well-
defined, and since X is path-connected, the endpoint γ(1) can be any point of
X, so π is surjective.
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Topology of X̃
Let U be the collection of path-connected open sets U ⊂ X such that

π1(U) −→ π1(X) is trivial (such U is simply connected and exists, because X is
locally simply connected). Given a set U ∈ U and a path γ in X from x0 to a
point in U , let

U[γ] = {[γ · η] | η : [0, 1] −→ U, η(0) = γ(1)}.

U[γ] depends only on the homotopy class [γ]. We see that π : U[γ] −→ U is
surjective, since U is path-connected, and injective, since different choices of
η joining γ(1) to a fixed x ∈ U are all homotopic in X from the trivial map
π1(U) −→ π1(X).

Another property of such sets is that U[γ] = U[γ′] if [γ
′] ∈ U[γ], because if

γ′ = γ · η, then the elements of U[γ′] have the form [γ · η · µ], so they lie in U[γ′],
while the elements of U[γ] have the form [γ · µ] = [γ · η · η−1 · µ] = [γ′ · η−1 · µ],
so they lie in U[γ′].

We use the last property to show that the sets U[γ] form a basis for a topology

on X̃, since if we take two such sets U[γ], V[η] and an element at its intersection
[µ] ∈ U[γ] ∩ V[η], then we have U[γ] = U[µ] and V[η] = V[µ]. So, if W ∈ U ,
W ⊂ U ∩ V and contains µ(1), then W[µ] ⊂ U[µ] ∩ V[µ] and [µ] ∈W[µ].

X̃ is a covering space of X
The bijection π : U[γ] −→ U is a homeomorphism, since it is a bijection

between the subsets V[η] ⊂ U[γ] and the sets V ∈ U contained in U . To verify
this, in one direction we have π(V[η]) = V and in the other direction we have
π−1(V )∩U[γ] = V[η] for any [η] ∈ U[γ] with endpoint in V , because V[η] ⊂ U[η] =
U[γ] and V[η] maps onto V .

We have shown that π : X̃ −→ X is a local homeomorphism. To complete
the proof that it is a covering map, we have that for a fixed U ∈ U , the sets
U[γ] for varying [γ], partition π−1(U), because if [µ] ∈ U[γ] ∩ U[γ′], then U[γ] =
U[µ] = U[γ′].

X̃ is path-connected
For a point [γ] ∈ X̃, let γt be the path in X that equals γ on [0, t] and is

stationary at γ(t) on [t, 1]. Then the function t 7→ [γt] is a path in X̃ lifting γ
that starts at [x0], the homotopy class of the constant path at x0, and ends at
[γ]. Since [γ] is an arbitrary point in X̃, X̃ is path connected.

X̃ is simply-connected
It suffices to show that π1(X̃, [x0]) is trivial or equivalently that its image

under π∗ is trivial, since π∗ is injective (by Theorem 3.8). The elements in the
image of π∗ are represented by loops γ at x0 that lift to loops in X̃ at [x0].
As we saw in the previous paragraph the path t 7→ [γt] lifts γ starting at [x0]
and, if this lifted path is a loop, this means that [γ1] = [x0]. But γ1 = γ, thus
[γ] = [x0], so γ is homotopic with the trivial loop. As a result the image of π∗
is the trivial loop.

In the case of manifolds:
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Theorem 3.14. Let π : X −→ Y be a topological covering map and suppose Y is
a connected smooth n-manifold. Then, X is also a topological n-manifold, and
has a smooth structure such that π is a smooth covering map.

Proof. Since π is a local homeomorphism, X is locally Euclidean. To show that
it is Hausdorff, let x1 and x2 be distinct points in X. If π(x1) = π(x2) and
U ⊆ Y is an evenly covered open subset containing π(x1), then the components
of π−1(U) containing x1 and x2 are dijoint open subsets of X that separate x1
and x2. On the other hand, if π(x1) ̸= π(x2), there are disjoint open subsets
U1, U2 ⊆ Y containing π(x1) and π(x2), respectively, and then π−1(U1) and
π−1(U2) are disjoint open subsets of X containing x1 and x2. Thus, X is
Hausdorff.

To show that X is second-countable (has a countable base), we will first
show that each fiber of π is countable. Given y ∈ Y and an arbitrary point
x0 ∈ π−1(y), we have the lifting correspondence ϕ : π1(Y, y) −→ π−1(y), which
is surjective by Proposition 3.11. This shows second-countability, since from
Theorem 2.10 every fundamental group of a manifold is countable.

The collection of all evenly covered subsets is an open cover of Y , and there-
fore has a countable subcover {Ui}. For any given i, each component of π−1(Ui)
contains exactly one point in each fiber of the points of Ui, so π

−1(Ui) has count-
ably many components. Hence, the collection of all components of all sets of
the form π−1(Ui) is a countable open cover of X. Since each such component
is second-countable, then X is second countable. This completes the proof that
X is a topological manifold.

To construct a smooth structure onX, suppose x is any point inX, and let U
be an evenly covered neighbourhood of π(x). After shrinking U if necessary, we
may assume also that it is the domain of a smooth coordinate map ϕ : U −→ Rn.
If Ũ is the component of π−1(U) containing x, and ϕ̃ = ϕ ◦ π|Ũ : Ũ −→ Rn,

then (Ũ , ϕ̃) is a chart on X. If two such charts (Ũ , ϕ̃) and (Ṽ , ψ̃) overlap, the
transition map can be written

ψ̃◦ ϕ̃−1 = (ψ◦π|Ũ∩Ṽ )◦(ϕ◦π|Ũ∩Ṽ )
−1 = ψ◦(π|Ũ∩Ṽ )◦(π|Ũ∩Ṽ )

−1 ◦ϕ−1 = ψ◦ϕ−1,

which is smooth. Thus the collection of all such charts defines a smooth structure
on X.

Finally, π is a smooth covering map, because its coordinate representation
in terms of pair of charts (Ũ , ϕ̃) and (U, ϕ) is the identity.

Corollary 3.15 (Existence of a Universal Covering Manifold). If X is
a connected smooth manifold, there exists a simply connected smooth manifold
X̃, called the universal covering manifold of X, and a smooth covering map
π : X̃ −→ X.

Remark. The universal covering manifold is unique in the following sense: if X̃ ′

is any other simply connected smooth manifold that admits a smooth covering
map π′ : X̃ ′ −→ X, then there exists a diffeomorphism Φ : X̃ −→ X̃ ′ such that
π′ ◦ Φ = π. However, we will not prove this result.
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Proof. This is a result of the existence of the universal topological cover and
the theorem, which asserts that this topological space has a smooth manifold
structure.

3.5 Universal Covering in Lie Groups

Covering is a topological property, so we define the universal covering group of
a Lie group as the universal covering manifold of the manifold structure of the
Lie group. Now, we prove that the covering manifold is also a group.

Theorem 3.16 (Existence of a Universal Covering Group). Let G be a
connected Lie group. Then there exists a simply connected Lie group G̃, called
the universal covering group of G, that admits a smooth covering map π : G̃→ G
that is also a Lie group homomorphism.

Proof. Let G̃ be the universal covering manifold of G (by Corollary 3.15) and
π : G̃→ G be the corresponding smooth covering map. Then π × π : G̃× G̃→
G×G is also a smooth covering.

To see the last fact, we take a point (g1, g2) ∈ G̃× G̃ and evenly covered U1

and U2 of g1 and g2 respectively. Then, since (π × π)−1(U1 × U2) = π−1(U1)×
π−1(U2), the components of (π×π)−1(U1 ×U2) are of the form V i

1 ×V j
2 , where

V i
1 is a component of π−1(U1) and V

j
2 is a component of π−1(U2). As a result,

(π × π)(V i
1 × V j

2 ) = U1 × U2 diffeomorphically.
We define the multiplication map m : G × G → G and the inversion map

i : G→ G of G. Let ẽ be an arbitrary element of the fiber π−1(e) ⊆ G̃. Since G̃
is simply connected, we can use the lifting property of covering maps (Theorem
3.9). Thus, the map m ◦ (π × π) : G̃ × G̃ → G has a unique continuous lift
m̃ : G̃× G̃→ G̃ satisfying m̃(ẽ, ẽ) = ẽ and π ◦ m̃ = m ◦ (π × π).

Because π is local diffeomorphism, we can deduce from the last relation that
m̃ is smooth.

With the same reasoning the map i◦π : G̃→ G has a smooth lift ĩ : G̃→ G̃,
satisfying ĩ(ẽ) = ẽ and π ◦ ĩ = i ◦ π.

Hence, we can define multiplication and inversion in G̃ by xy = m̃(x, y)
and x−1 = ĩ(x), ∀x, y ∈ G̃. As a result, we have that π(xy) = π(x)π(y) and
π(x−1) = π(x)−1 from the relations π ◦ m̃ = m ◦ (π × π) and π ◦ ĩ = i ◦ π.

If we show that G̃ is a group with these operations, then the above show
that π is a homomorphism.

First, we show that ẽ is an identity for multiplication in G̃. We consider the
map f : G̃ → G̃ defined by f(x) = ẽx. Then π ◦ f(x) = π(ẽ)π(x) = eπ(x) =
π(x). We conclude that f is a lift of π : G̃ → G. The identity map IdG̃ is
another lift of π, which agrees with f at a point, since f(ẽ) = m̃(ẽ, ẽ) = ẽ, so by
uniqueness of lifts (Theorem 3.4), we get f = IdG̃ ⇒ ẽx = x, ∀x ∈ G̃. Similarly,
xẽ = x.

Next, we show that multiplication in G̃ is associative. We consider the two
maps aL, aR : G̃× G̃× G̃→ G̃ defined by aL(x, y, z) = (xy)z and aR(x, y, z) =
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x(yz). Then we have:

π ◦ aL(x, y, z) = (π(x)π(y))π(z) = π(x)(π(y)π(z)) = π ◦ aR(x, y, z).

Thus, aL and aR are both lifts of the same map and they agree at (ẽ, ẽ, ẽ), so
they are equal. Similarly, we can show that x−1x = xx−1 = ẽ, so G̃ is a group.

Remark. In the above proof, we have not used that the manifold G̃ is simply-
connected, so we can conclude that any covering manifold of a Lie group is also
a Lie group.

Corollary 3.17. For any connected Lie group G, the universal covering group
is unique in the following sense: if G̃ and G̃′ are simply connected Lie groups
that admit smooth covering maps π : G̃→ G and π′ : G̃′ → G that are also Lie
group homomorphisms, then there exists a Lie group isomorphism Φ : G̃ → G̃′

such that π′ ◦ Φ = π.

Proof. This is a result of the uniqueness of covering manifold and the fact that
the covering manifold of a Lie group can have the structure of a Lie group.

Theorem 3.18. Let G be a Lie group and G̃ a covering group of it, with the
smooth covering map π : G̃ → G. Then the Lie algebras of G and G̃ are
isomorphic.

Proof. We have that Lie(G) ∼= TeG. Since the smooth covering map π : G̃→ G
is regular, the map π∗ : TẽG̃ → TeG is surjective. Using the fact that dim G̃ =
dimG, we conclude that TẽG̃ ∼= TeG, or equivalently Lie(G̃) ∼= Lie(G).

Corollary 3.19. If two Lie groups G1 and G2 have the same universal covering
up to isomorphism, then they have isomorphic Lie algebras.

We have seen that Lie groups that have the same universal covering group,
have also the same Lie algebra. We can also prove the reverse: if two Lie groups
share the same Lie algebra, then they have the same universal covering group.
This results from the one-to-one correspondence between simply connected Lie
groups and finite-dimensional Lie algebras. This correspondence is called Lie
Correspondence.

4 Lie correspondence

Definition 4.1 (Lie Subgroup and Lie Subalgebra). A Lie subgroup H
of a Lie group G is called Lie subgroup if it is a Lie group (with respect to
the induced group operation), and the inclusion map iH : H ↪−→ G is a smooth
immersion (and therefore a Lie group homomorphism).

A Lie subalgebra h of a Lie algebra g is a linear subspace of g which is
closed under the Lie bracket.
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Theorem 4.2. If h is a Lie subalgebra of g, then there is a unique connected
Lie subgroup H of G with Lie algebra h.

Proof. Let X1, X2, ..., Xk be a basis of h ⊂ g. From the definition of Lie algebra,
the vector fields Xi are left invariant and linearly independent at the identity
e. As a result, they are linearly independent at all g ∈ G (Xg = Lg(Xe)). In
other words, we have:

Vg = span{(X1)g, ..., (Xk)g}

which is a k-dimensional distribution on G, which is also involutive from the
properties of Lie algebras. Thus, by Frobenius theorem there is a unique maxi-
mal integral manifold of V through e. We denote this by H.

We need to show that H is a subgroup of G. Let h1, h2 ∈ H. We have
h1 = Lh1

e ∈ H ∩ Lh1
H. Since H is an integral manifold, then Lh1

H is also
an integral manifold. Also, H is maximal and its intersection with Lh1

H is
not empty, hence Lh1

H ⊂ H. Then, we get h1h2 = Lh1
(h2) ∈ H. Similarly,

Lh−1
1
(h1) = e ∈ H, so Lh−1

1
H ⊂ H ⇒ Lh−1

1
(e) = h−1

1 ∈ H. So, H is a subgroup

of G. The group operations are the same as in G, so they are smooth. As a
result, we get that H is a Lie group.

For uniqueness, let K be another connected Lie subgroup of G with Lie
algebra h. Then K is also an integral manifold of V , getting K ⊂ H (H is
maximal). Since TeK = TeH, there is a neighbourhood of e that the inclusion
is isomorphism. However, we can generate any element of a connected Lie
group by any open set containing e (see proof of Theorem 5.4), so this local
isomorphism extends to the isomorphism K ∼= H.

Lemma 4.3. Suppose G and H are connected Lie groups and Φ : G → H is a
Lie group homomorphism. If Φ∗ : g → h is isomorphism, then Φ is a covering
map.

Proof. Since Φ∗ is an isomorphism between TeG and TeH, Φ is a local diffeo-
morphism in a neighbourhood of e ∈ H. Since, H is connected, we can extend
Φ to all elements of H (see proof of Theorem 5.4), so Φ is surjective.

It suffices to check the covering property. It is sufficient to check only for
e ∈ H due to group invariance. Again, by the isomorphism Φ∗, Φ maps a
neghbourhood U of e ∈ G bijectively to a neghbourhood V of e ∈ H. Let
Γ = Φ−1(e) ⊂ G. Then Γ is a subgroup of G and for any a ∈ Γ,

Φ ◦ La(g) = Φ(ag) = Φ(a)Φ(g) = Φ(g).

So, Φ−1(V ) =
⋃

a∈Γ LaU . Then, we are done if we show that La1U∩La2U =

∅ for a1 ̸= a2 ∈ Γ. We will show this by contradiction. Let a = a−1
1 a2. If

La1U ∩ La2U ̸= ∅, then LaU ∩ U ̸= ∅. We take p2 = ap1 ∈ LaU ∩ U , where
p1, p2 ∈ U . Then Φ(p2) = Φ(ap1) = Φ(p1). However, Φ is injective on U , so
p1 = p2 ⇒ a = e⇒ a1 = a2, contradiction.
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Corollary 4.4. Let Φ : G→ H be a Lie group homomorphism with Φ∗ : g → h
being isomorphism. If G is connected and H is simply-connected, then Φ is a
Lie group isomorphism.

Proof. From previous Lemma, Φ is a covering map. SinceH is simply connected,
we get that Φ is a homeomorphism. Thus, Φ and Φ−1 are both continuous Lie
group homomorphisms, which means that they are smooth. As a result, Φ is a
diffeomorphism.

Theorem 4.5. Suppose G and H are Lie groups with G simply-connected, and
let g and h be their Lie algebras. Then for any Lie algebra homomorphism
ϕ : g → h, there is a unique Lie group homomorphism Φ : G → H, such that
Φ∗ = ϕ.

Proof. Suppose k = graph(ϕ) = {(X,ϕ(X)) : X ∈ g}. It is easy to see that k is
a subalgebra of g × h. By the Theorem 4.2, there exists a unique subgroup K
of G×H with k as its Lie algebra.

So, considering the inclusion i : K → G × H and the projection pr1 :
G×H → G, we define the Lie group homomorphism Ψ : K → G, Ψ = pr1 ◦ i,
with Ψ∗ = (pr1)∗ ◦ i∗ being a Lie algebra homomorphism (from Lie(G) ∼= TeG).
But Ψ∗ : k → g with (X,ϕ(X)) 7→ X is obviously a bijection. Hence, by the
previous corollary, Ψ is a Lie group isomorphism.

Then, we can define Φ : G → H as the composition G
Ψ−1

−−−→ K
pr2−−→ H,

which has differential Φ∗ = (Ψ−1)∗ ◦ (pr2)∗ = ϕ.
For the uniqueness, suppose we have two Lie group homomorphisms Φ,Ψ :

G −→ H, such that Φ∗ = Ψ∗. Then, we see that the two graph subalgebras
graph(Φ∗) and graph(Ψ∗) are equal. But again from the Theorem 4.2, there
is a unique Lie subgroup of G × H for this subalgebra. Thus, graph(Φ) =
graph(Ψ) ⇒ Φ(g) = Ψ(g), ∀g ∈ G.

Corollary 4.6. If G and H are simply connected Lie groups with isomorphic
Lie algebras, then G and H are isomorphic.

Proof. Let g, h be the Lie algebras of G and H respectively. If ϕ : g −→ h is
the Lie algebra isomorphism, we have from the previous theorem that there are
Lie group homomorphisms Φ : G −→ H and Ψ : H −→ G such that Φ∗ = ϕ and
Ψ∗ = ϕ−1. However, both the identity map of G and the composition Ψ ◦ Φ
are Lie group homomorphisms from G to itself and their induced Lie algebra
homomorphisms are equal to the identity. So, by the uniqueness of the previous
theorem, we get Ψ ◦ Φ = IdG. Similarly, Φ ◦ Ψ = IdH , so Φ is a Lie group
isomorphism.

We now have the results necessary for one side of the correspondence. For
the other side, we will need Ado’s Theorem, which we only state, since its proof
is not related with the topic of this project.

Theorem 4.7. (Ado’s Theorem). Every finite-dimensional real Lie alge-
bra is isomorphic to a Lie subalgebra of some matrix algebra gl(n,R) with the
commutator bracket.
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Finally, we can prove the theorem of correspondence between Lie algebras
and simply-connected Lie groups.

Theorem 4.8 (The Lie Correspondence). There is a one-to-one correspon-
dence between isomorphism classes of finite-dimensional Lie algebras and iso-
morphism classes of simply connected Lie groups, given by associating each sim-
ply connected Lie group with its Lie algebra.

Proof. We need to show that this correspondence is bijective. If two simply
connected Lie groups have isomorphic Lie algebras, then they are isomorphic by
Corollary 4.6, so the correspondence is injective. By the previous theorem, each
finite-dimensional Lie algebra is isomorphic to a Lie subalgebra g of gl(n,R),
which by Theorem 4.2 has a unique connected Lie subgroup G of GL(n,R).
Taking the universal covering group of G, it has isomorphic Lie algebra to the
initial one, so the correspondence is surjective.

5 Classification of Lie Groups

At this point, we have proved that Lie groups with isomorphic Lie algebras
have also isomorphic universal covering groups, which correspond bijectively
with finite-dimensional Lie algebras. Now, we will see that from this universal
covering group, we can produce all the different Lie groups, up to isomorphism,
that have the same Lie algebra. Next, we present some useful results.

Proposition 5.1. If G is a connected Lie group and H ⊆ G is a discrete
subgroup, then the natural quotient map π : G −→ G/Γ is a smooth covering
map.

Proof. The map π is obviously surjective. Let U be an open neighbourhood
of e in G so small that U ∩ H = {e}. Let V be a connected open symmetric
neighbourhood of e in G such that V 2 ⊆ U . We form the open connected sets
V h in G for h ∈ H. If h1, h2 ∈ H such that V h1 ∩ V h2 ̸= ∅, then there exist
v1, v2 ∈ V , such that v1h1 = v2h2, thus h1h

−1
2 = v−1

1 v2 ∈ V 2∩H ⊆ U∩H = {e}.
Therefore, h1 = h2 and the sets V hi are pairwise disjoint.

Next, let g1, g2 ∈ V h for some fixed h. If π(g1) = π(g2), then we have
g1H = g2H and hence g1g

−1
2 ∈ H. But writing g1 = v1h, g2 = v2h for some

v1, v2 ∈ V , we get that v1v
−1
2 = v1h · h−1v−1

2 = g1g
−1
2 ∈ H, thus v1 = v2 and

g1 = g2. So, π is injective on V h, and therefore a homeomorphism of V h onto
the open neighbourhood V H of identity in G/H. Translating by each g ∈ G,
we get that π is a homeomorphism of each open connected set gV h onto gV H
in G/H, and hence π is a covering map as claimed.

Definition 5.2 (Normal Lie subgroups). A Lie subgroup H of G is called
normal subgroup, if ∀g ∈ G, gH = Hg.

Theorem 5.3 (First Isomorphism Theorem for Lie Groups). If Φ : G −→
H is a Lie group homomorphism, then the kernel of Φ is a normal Lie subgroup

20



of G, the image of Φ has a unique smooth manifold structure making it into a
Lie subgroup of H, and Φ descends to a Lie group isomorphism Φ̃ : G/ kerΦ −→
ImΦ. If Φ is surjective, then G/ kerΦ is smoothly isomorphic to H.

Proof. To begin with, kerΦ is a normal subgroup of G, because Φ(g kerΦg−1) =
Φ(g)eΦ−1(g) = e ⇒ g kerΦg−1 = kerΦ. Also, from group theory, we have that
ImΦ is subgroup of H and Φ descends to a group isomorphism Φ̃ : G/ kerΦ −→
ImΦ.

However, it is easy to see that G/ kerΦ also has the structure of manifold,
thus it is a Lie group, and the projection π : G −→ G/ kerΦ is surjective and
has constant rank (Theorem 1.3). Therefore, we get that π is smooth and
considering that Φ is also smooth (as a Lie group homomorphism), then from
Φ = Φ̃ ◦ π we have that Φ̃ is also smooth.

Next, the smooth Lie monomorphism Φ̃ : G/ kerΦ −→ H has constant rank,
so it is a smooth immersion. As a result, ImΦ has also the structure of subman-
ifold, so it is a Lie subgroup. Finally, we have proven that Φ̃ : G/ kerΦ −→ ImΦ
is a Lie group isomorphism.

Theorem 5.4. Let G and H be connected Lie groups. For any Lie group
homomorphism Φ : G −→ H, the following are equivalent:

1. Φ is surjective and has discrete kernel.

2. Φ is a smooth covering map.

3. Φ is a local diffeomorphism.

4. The induced homomorphism Φ∗ : Lie(G) −→ Lie(H) is an isomorphism.

Proof. (1) ⇒ (2) Φ is surjective with discrete kernel Γ ⊆ G. Hence, from
Proposition 5.1, the quotient map π : G −→ G/Γ is a smooth covering map and
from First Isomorphism Theorem, Φ̃ : G/Γ −→ H is a Lie group isomorphism
(ImΦ = H, because Φ is surjective). As a result, Φ = Φ̃ ◦ π is itself a smooth
covering map.

(2) ⇒ (3) From the properties of smooth covering maps, as proven above.
(3) ⇒ (1) Since Φ is a local diffeomorphism, it is also a smooth submersion.

Also, from the properties of local diffeomorphisms (see the proof of properties for
smooth covering maps) dimG = dimH. Therefore, every set Φ−1(h), ∀h ∈ ImΦ
is a submanifold of G of co-dimension equal with dimH, so dimension 0. Hence,
kerΦ = Φ−1(e) has dimension 0, so it is a discrete set.

To prove surjectivity, we take a neighbourhood U of e ∈ G, which is mapped
diffeomorphically to V , a neighbourhood of e ∈ H. Then, since H is connected,
∀h ∈ H, there is a path γ : [0, 1] −→ H from e to h. We take a partition of
[0, 1], 0 = s0 < s1 < ... < sm = 1, such that γ(si1)

−1γ(si) ∈ V for i = 1, ...,m.
We can do that because multiplication is smooth and γ(si)

−1γ(si) = e. So, we
have that h = γ(s0)(γ(s0)

−1γ(s1))(γ(s1)
−1γ(s2))...(γ(sm−1)

−1γ(sm)), because
γ(s0) = e and γ(sm) = h. Every element in the parentheses γ(si1)

−1γ(si) is an
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element of V , so there is some element gi ∈ U such that Φ(xi) = γ(si1)
−1γ(si).

Therefore
h = Φ(x1)Φ(x2)...Φ(xm) = Φ(x1x2...xm)

So, Φ is surjective.
(3) ⇒ (4) Since Φ is a local diffeomorphism, it is also a smooth immersion

and smooth submersion. Thus, TeG ∼= TeH ⇒ Lie(G) ∼= Lie(H).
(4) ⇒ (3) Since Φ∗ is an isomorphism of Lie algebras, we have that Φ is a

local diffeomorphism in a neighbourhood of e ∈ G. However, Lie group homo-
morphisms have constant rank everywhere, so from the local diffeomorphism of
the neighbourhood of e, we get rank(Φ) = dimG = dimH, therofore Φ is a
local diffeomorphism everywhere in G.

Now, we can prove the main result of the section.

Theorem 5.5 (Classification of Lie Groups). Let g be a finite-dimensional
Lie algebra. The connected Lie groups whose Lie algebras are isomorphic to g are
(up to isomorphism) precisely those of the form G0/D, where G0 is the simply
connected Lie group corresponding to the Lie algebra g, and D is a discrete
normal subgroup of G.

Proof. From the Lie Correspondence Theorem (4.8), for any Lie algebra g there
exists a simply connected Lie group G0 with Lie algebra isomorphic to g.

Let H be any other connected Lie group whose Lie algebra is isomorphic
to g and ϕ : Lie(G0) → Lie(H) be the Lie algebra isomorphism. Then, from
Theorem 4.5, there is a Lie group homomorphism Φ : G0 → H such that Φ∗ = ϕ.
Also from Theorem 5.4, Φ is a covering map of H and it is surjective with kernel
a discrete normal subgroup of G0. Then, from the First Isomorphism Theorem
for Lie groups (Theorem 4.6) H ∼= G0/ ker(Φ) = G0/D.

So, in order to classify all the connected Lie groups that correspond to the
Lie algebra g, we need to find the discrete normal subgroups of the simply-
connected Lie group G0. The result below will make that process easier.

Definition 5.6 (Center of a Group). The set of elements of a group G that
commute with all the elements of the group is called the center of the group
and is denoted Z(G). The center is a subgroup that is also normal. Every
subgroup of the center is called central subgroup.

Theorem 5.7. Every discrete normal subgroup of a connected Lie group is
central.

Proof. Let G be the connected Lie group and H a discrete normal subgroup.
Then taking an arbitrary h ∈ H, we consider the map ϕ : G −→ H, g 7→
ghg−1h−1. It is well defined, because from the normality property ghg−1 ∈ H,
so ghg−1h−1 ∈ H as well. Since multiplication is smooth, then ϕ is also smooth.
However, G is connected, so the image of G is also connected and, since H is
discrete, the image must be a point. Plugging e to ϕ, we get that ϕ(e) = e, so
ϕ(g) = e, ∀g ∈ G. Therefore, gh = hg, ∀g, so h belongs to the center of G.
Since h is arbitrary, all elements of H belong to the center, so H is central.
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At last, we can state a process for finding all the connected Lie groups
that have the same Lie algebra. Starting with the Lie algebra g, we find the
corresponding simply-connected Lie groupG0. Then, we can calculate the center
Z(G0) and take all its discrete subgroupsDi (which will also be normal). Finally,
we take all the Lie groups G0/Di, which have the same Lie algebra g and, from
Proposition 3.11, have fundamental group π1(G0/Di) ∼= Di.

6 SU(2) is the universal covering group of SO(3)

Finally, we apply the results of the previous section to prove that the Lie group
SU(2) is a universal covering of the Lie group SO(3) and to find the fundamental
group of SO(3).

First, in order to use the results of the previous sections, we need connect-
edness for these groups:

Proposition 6.1. The groups SO(n) are path-connected.

Proof. All orthogonal matrices are diagonalisable. So, we can write some A ∈
SO(3), as A = V DV T , where D is a diagonal matrix. Since A is orthogonal
AAT = I, so all its eigenvalues have norm 1. Also, A is a real matrix, so for
every complex eigenvalue, its conjugate is also an eigenvalue. It is known that
a diagonal matrix D with complex entries is similar with a matrix replacing its
pair of complex eigenvalues:[

x+ yi 0
0 x− yi

]
∼

[
x y
−y x

]
=

[
cos θ sin θ
− sin θ cos θ

]
since x2 + y2 = 1.

So, we have made a new matrix D′, such that A = V ′D′V ′T . We construct
a path A(t) = V ′D′(t)V ′T , where in D′(t) we have replaced every angle θ with
(1 − t)θ. This path is continuous, it is inside SO(n) and A(1) = I, so every
matrix A has a continuous path to the identity, thus SO(n) is connected.

Proposition 6.2. The groups SU(n) are path-connected.

Proof. As in the previous proof, we can write some matrix A ∈ SU(n) as V DV ∗,
where D is a diagonal matrix. All the eigenvalues of A have norm 1, so they
have the form eiθ. Therefore, we can construct a path A(t) = V D(t)V ∗, where
in D(t) we have replaced every angle θ with (1− t)θ. This path is continuous,
it is inside SU(n) and A(1) = I, so every matrix A has a continuous path to
the identity, thus SU(n) is connected.

Proposition 6.3. SU(2) is a simply connected Lie group.

Proof. From the definition of SU(2), we can see that every matrix in SU(2) has
the form: [

a −b∗
b a∗

]
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where a, b ∈ C and |a|2 + |b|2 = 1. Hence, if a = a1 + ia2 and b = b1 + ib2, we
have that a21 + a22 + b21 + b22 = 1. Therefore, we get an isomorphism SU(2) ∼= S3.

In Theorem 2.12, we have showed that π1(S
3) is trivial, so π1(SU(2)) is also

trivial and SU(2) is simply connected.

Now we prove the isomorphism between the Lie algebras of SU(2) and SO(3)
to show the covering property.

Proposition 6.4. The Lie algebras so(3) and su(2) are isomorphic.

Proof. The Lie algebra of a Lie group is isomorphic with the tangent space of the
Lie group in the identity element. So, to compute the Lie algebra of SO(3), we
take an arbitrary smooth curve c(t) with c(0) = I and c′(0) = X. We have that
c(t)c(t)T = I, so differentiating this relation we get: c′(t)c(t)T + c(t)c′(t)T = 0.
Thus, plugging t = 0, we get X +XT = 0. Therefore,

so(3) = {X ∈ GL(3,R) : X +XT = 0}

Solving this equation, we get that all elements X of so(3) have the form: 0 −a b
a 0 −c
−b c 0


So, we have the basis {Lx, Ly, Lz} of so(3) where

Lx =

0 −1 0
1 0 0
0 0 0

 Ly =

 0 0 1
0 0 0
−1 0 0

 Lz

0 0 0
0 0 −1
0 1 0


With the usual Lie bracket for matrices, we have [Lx, Ly] = Lz, [Lz, Lx] =
Ly, [Ly, Lz] = Lx. Finally, so(3) = spanR(Lx, Ly, Lz).

Similarly, to compute the Lie algebra of SU(2), we take an arbitrary smooth
curve c(t) with c(0) = I and c′(0) = X. We have that c(t)c(t)∗ = I, so
differentiating this relation we get: c′(t)c(t)∗ + c(t)c′(t)∗ = 0. Thus, plugging
t = 0, we get X +X∗ = 0. Therefore,

su(2) = {X ∈ GL(2,C) : X +X∗ = 0}

Solving this equation, we get that all elements X of su(2) have the form:[
ai −b+ ci

b+ ci −ai

]
where a, b, c are reals. So, we have the basis {u1, u2, u3} of su(2) where

u1 =
1

2

[
i 0
0 −i

]
u2 =

1

2

[
0 −1
1 0

]
u3 =

1

2

[
0 i
i 0

]
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With the usual Lie bracket for matrices, we have [u1, u2] = u3, [u3, u1] =
u2, [u2, u3] = u1. Finally, su(2) = spanR(u1, u2, u3).

Therefore, defining the homomorphism of 3-dimensional spaces ϕ : so(3) −→
su(2), such that ϕ(Lx) = u1, ϕ(Ly) = u2 and ϕ(Lz) = u3, we see that it is a Lie
algebra isomorphism, because Lx, Ly, Lz satisfy the same Lie bracket relations
as its images.

Now, that SU(2) and SO(3) have isomorphic Lie algebras and SU(2) is
simply-connected, we derive that SU(2) is the universal covering group of SO(3).
Hence, we get the following results:

Proposition 6.5. SU(2)/Z2
∼= SO(3).

Proof. First, we will find the center of the group SU(2). Let A ∈ Z(SU(2))
such that

A =

[
a −b∗
b a∗

]
Then it commutes with every B ∈ SU(2). Taking

B =

[
0 1
−1 0

]
we get [

b∗ a
−a∗ b

]
=

[
b a∗

−a b∗

]
concluding that a, b are real. Also it commutes with[

i 0
0 −i

]
hence taking the commutation relation[

−bi ai
ai bi

]
=

[
bi ai
ai −bi

]
so b = 1 and a = 1 or a = −1, since |a|2 + |b|2 = 1. Therefore, we have that
Z(SU(2)) = {I,−I} and the normal subgroups are {I} and {I,−I}.

Since the Lie algebras su(2) ∼= so(3), from the Theorem 5.5, we have that
either SO(3) ∼= SU(2) or SO(3) ∼= SU(2)/{I,−I}. We will show that SO(3)
and SU(2) cannot be isomorphic with contradiction.

Assume that there is an isomorphism ϕ : SU(2) −→ SO(3). Then, ϕ(I2) = I3.
We take the 3 matrices, which are elements of SO(3):

DA =

1 0 0
0 −1 0
0 0 −1

 DB =

−1 0 0
0 1 0
0 0 −1

 DC =

−1 0 0
0 −1 0
0 0 1


These 3 matrices squared are equal with the identity. So, their inverse images
squared are also equal with the identity (ϕ−1(DA))

2 = ϕ−1(I3) = I2). Squaring
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a matrix in SU(2) of the usual form we take that, if their squares equal identity,
then they have the form:

ϕ−1(DA) =

[
a 0
0 a∗

]
ϕ−1(DB) =

[
b 0
0 b∗

]
ϕ−1(DC) =

[
c 0
0 c∗

]
where |a| = |b| = |c| = 1. From the relations DADB = DC , DBDC = DA and
DADC = DB , we take ab = c, bc = a and ac = b. Reducing a = eiθA , b =
eiθB , c = eiθC , we have that for all angles θ = ±π. So a, b, c = ±1.

But DA, DB , DC are different matrices and two of them have equal inverse
images, so ϕ−1 is not injective and ϕ is not an isomorphism.

As a result, we get that necessarily SU(2)/Z2
∼= SO(3).

Corollary 6.6. The fundamental group of SO(3) is isomorphic with Z2.

Proof. If π : SU(2) −→ SO(3) is the covering map, then π−1(I3) = {I2,−I2} ∼=
Z2, since SO(3) ∼= SU(2)/{I,−I}. So, from Proposition 3.11, π1(SO(3)) ∼=
π−1(I3) ∼= Z2.
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