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Abstract5

The Circuit Size Hierarchy (CSHa
b ) states that if a > b ≥ 1 then the set of functions on n variables6

computed by Boolean circuits of size na is strictly larger than the set of functions computed by circuits7

of size nb. This result, which is a cornerstone of circuit complexity theory, follows from the non-8

constructive proof of the existence of functions of large circuit complexity obtained by Shannon in 1949.9

Are there more “constructive” proofs of the Circuit Size Hierarchy? Can we quantify this? Motivated10

by these questions, we investigate the provability of CSHa
b in theories of bounded arithmetic. Among11

other contributions, we establish the following results:12

(i) Given any b > 1, CSHa
b is provable in Buss’s theory T2

2 for a > b+ 1.13

(ii) In contrast, if there are constants a > b > 1 such that CSHa
b is provable in the theory T1

2, then14

there is a constant ε > 0 such that PNP requires non-uniform circuits of size n1+ε.15

In other words, an improved upper bound on the proof complexity of CSHa
b would lead to new lower16

bounds in complexity theory.17

We complement these results with a proof of the Formula Size Hierarchy (FSHa
b ) in PV1 with pa-18

rameters a > 2 and b = 3/2. This is in contrast with typical formalizations of complexity lower bounds19

in bounded arithmetic, which require APC1 or stronger theories and are not known to hold even in T1
2.20
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1 Introduction43

1.1 Context and Motivation44

The existence of Boolean functions requiring large circuits can be shown by a non-constructive counting45

argument, as established by Shannon in 1949 [Sha49]. It follows from Shannon’s seminal result and a simple46

padding argument that if a > b ≥ 1 there are functions computable by circuits of size na that cannot be47

computed by circuits of size nb. In other words, the classification of Boolean functions by their minimum48

circuit size forms a strict hierarchy.49

Obtaining a “constructive” form of these results has been a holy grail in computational complexity50

theory for several decades due to its connections to derandomization and as an approach to separating P51

and NP. For instance, if there is a polynomial-time algorithm that given 1n outputs the truth-table of a52

function f : {0, 1}logn → {0, 1} that requires circuits of size nΩ(1), then P = BPP [IW97]. In results of53

this form, a constructive form of the (non-constructive) proof of the existence of hard functions is interpreted54

computationally as the existence of an algorithm of bounded complexity that computes a hard function.55

In this paper, rather than focusing on the existence of algorithms to capture the constructiveness of a56

statement, we explore this notion from the perspective of mathematical logic, specifically concerning its57

provability in certain mathematical theories. We are interested in identifying the weakest theory capable of58

establishing the aforementioned circuit size hierarchy for Boolean circuits and related results.59

As one of our contributions, we present a tight connection between the computational and proof-theoretic60

perspectives. We demonstrate that proving the non-uniform circuit size hierarchy in a theory known as T1
261

implies the existence of a function in PNP that requires Boolean circuits of size at least n1+ε. The latter is62

a frontier question in complexity theory (see, e.g., [CMMW19]). Thus, in a precise sense, developing more63

constructive proofs of the circuit size hierarchy would lead to significant progress on explicit circuit lower64

bounds.65

We now proceed to describe this result and other contributions of this work in detail.66

1.2 Results67

We will be concerned with standard theories of bounded arithmetic. These theories are designed to68

capture proofs that manipulate and reason with concepts from a specified complexity class. Notable exam-69

ples include Cook’s theory PV1 [Coo75], which formalizes polynomial-time reasoning; Jeřábek’s theory70

APC1 [Jeř04, Jeř05, Jeř07], which extends PV1 by incorporating the dual weak pigeonhole principle for71

polynomial-time functions and formalizes probabilistic polynomial-time reasoning; and Buss’s theories Ti
272

[Bus86], which incorporate induction principles corresponding to various levels of the polynomial-time73

hierarchy.74

For an introduction to bounded arithmetic, we refer to [Bus97]. For its connections to computational75

complexity and a discussion on the formalization of complexity theory, we refer to [Oli24].1 Here we only76

recall that theory PV1 corresponds essentially to T0
2 [Jeř06], and that T0

2 ⊆ T1
2 ⊆ T2

2 correspond to the first77

levels of Buss’s hierarchy. A brief overview of the theories is provided in Section 2.78

For a given n ∈ N, we use CIRCUIT[s(n)] to denote the set of Boolean functions f : {0, 1}n → {0, 1}79

computed by circuits of size at most s(n). Similarly, we write FORMULA[s(n)] when referring to formula80

size. We use SIZE[s(n)] to denote the set of languages L ⊆ {0, 1}∗ that admit a sequence of circuits of size81

at most s(n).82

1In particular, the reference [Oli24] contains a detailed discussion of some aspects of the formalization of the statements ap-
pearing below.
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Circuit Size Hierarchy. For rationals a > b ≥ 1 and n0, we consider the following sentence:283

CSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ circuit D : {0, 1}n → {0, 1} of size ≤ na,

∀ circuit C : {0, 1}n → {0, 1} of size ≤ nb, ∃x ∈ {0, 1}n such that D(x) ̸= C(x).

In other words, CSH[a, b, n0] states that CIRCUIT[nb] ⊊ CIRCUIT[na] whenever n ≥ n0.84

85

Next, we state our first result.86

Theorem 1. The following results hold:87

(i) For every choice of rationals a and b with a− 1 > b > 1, and for every large enough n0 ∈ N,

T2
2 ⊢ CSH[a, b, n0] .

(ii) If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ PNP such that L /∈ SIZE[n1+ε].88

(iii) Similarly to the previous item, if PV1 ⊢ CSH[a, b, n0], there is L ∈ P such that L /∈ SIZE[n1+ε].89

To put it another way, we can establish a circuit size hierarchy within the theory T2
2. If this result could90

also be proven in the theory T1
2, it would lead to a significant breakthrough in circuit lower bounds. Thus, by91

enhancing the proof complexity upper bound for the provability of the circuit size hierarchy, we can achieve92

new circuit lower bounds.93

Note that in Theorem 1 Items (ii) and (iii) we obtain a lower bound against circuits of size n1+ε, where94

the constant ε > 0 depends on the proof of CSH[a, b, n0] in the corresponding theory. In other words, while95

the sentence claims the existence of hardness against circuits of size nb, we are only able to extract a weaker96

lower bound for an explicit problem.97

In our next result, we describe a setting where we can extract all the hardness from a proof of the98

corresponding sentence.99

Succinct Circuit Size Hierarchy. For rationals a > b ≥ 1 and n0, we consider the following sentence:100

SCSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ collection {(x1, b1), . . . , (xℓ, bℓ)} of size ℓ ≤ na with

|xi| = n ∧ |bi| = 1 for each i ∈ [ℓ] and xi ̸= xj for distinct i, j ∈ [ℓ] ,

∀ circuit C : {0, 1}n → {0, 1} of size ≤ nb, ∃i ∈ [ℓ] such that C(xi) ̸= bi.

In other words, SCSH[a, b, n0] states that for every n ≥ n0 there is a collection of ℓ ≤ na labelled examples101

such that every circuit of size at most nb disagrees with at least one of its labels.102

103

We obtain the following results on the proof complexity of the succinct circuit size hierarchy.104

Theorem 2. The following results hold:105

2The abbreviation n ∈ Log denotes that n is the length of a variable N (see, e.g., [Oli24] for more details).
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(i) For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

T2
2 ⊢ SCSH[a, b, n0] .

(ii) If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ SCSH[a, b, n0] ,

then there is a language L ∈ PNP such that L /∈ SIZE[nb].106

In our final result, we investigate the provability of size hierarchies for more restricted computational107

models in T1
2 and weaker theories.108

Formula Size Hierarchy. For rationals a > b ≥ 1 and n0, we consider the following sentence:109

FSH[a, b, n0] ≡ ∀n ≥ n0 ∈ Log, ∃ formula F : {0, 1}n → {0, 1} of size ≤ na,

∀ formula G : {0, 1}n → {0, 1} of size ≤ nb, ∃x ∈ {0, 1}n such that F (x) ̸= G(x).

In other words, FSH(a, b, n0) states that FORMULA[nb] ⊊ FORMULA[na] whenever n ≥ n0.110

111

We establish that for some parameters a formula size hierarchy is provable already in PV1.112

Theorem 3. Consider rationals a > 2 and b = 3/2, and let n0 be a large enough positive integer. Then

PV1 ⊢ FSH[a, b, n0] .

While many lower bounds can be proven in APC1 and stronger theories (see [MP20, Oli24, CLO24] and113

references therein), Theorem 3 provides an example of a non-trivial lower bound that can be established in114

PV1, which might be of independent interest.115

1.3 Techniques116

The proofs of Items (ii) and (iii) in Theorem 1 are inspired by arguments from [KO17, Kra21] that117

rely on a combination of a witnessing theorem with a term elimination strategy. Recall that the witnessing118

theorem allows us to extract computational information from a proof of the sentence in the theory. Roughly119

speaking, in our context this implies that the first existential quantifier in the sentence CSH[a, b, n0], which120

corresponds to a circuit computing a hard function, can be witnessed by a finite number of terms t1, . . . , tk121

of the corresponding theory. In PV1, a term yields a polynomial-time function, while in T1
2 a term yields122

a polynomial-time function with access to an NP oracle. The main difficulty is that (1) for a given input123

length n it is not clear which term among t1, . . . , tk succeeds in constructing a hard function, and (2) for a124

term to succeed we must provide counter-examples to the candidate witnesses provided by previous terms.125

As in previous papers, we assume that the conclusion of the theorem does not hold, and use this assump-126

tion to rule out the correctness of each term. This leads to a contradiction, meaning that the original sentence127

is not provable in the corresponding theory. Implementing this plan requires a careful argument, and we are128

currently only able to carry it out under a complexity inclusion in SIZE[n1+ε] as opposed to SIZE[nb]. The129

proof of the result is given in Section 3.1.130

On the other hand, in the case of the succinct circuit size hierarchy, the argument for Item (ii) of Theo-131

rem 2 is simpler and allows us to start with the weaker assumption that PNP ⊆ SIZE[nb]. Without getting132
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into the technical details, the main reason for not losing hardness in this result is that given a labelled list of133

examples and access to an NP oracle, we can efficiently compute a minimum size circuit that agrees with134

this list of inputs. Consequently, we can check if a candidate labelled list provided by a term is indeed hard,135

or produce a counter-example when this is not the case. The same computation is not available in the case136

of Theorem 1, since it is not clear how to efficiently compute with access to an NP oracle if a given circuit137

admits a smaller equivalent circuit. The proof of Item (ii) of Theorem 2 appears in Section 3.2.138

The proofs of Theorem 1 Item (i) and Theorem 2 Item (i) are given in Section 3.3. The formalization of139

these hierarchies in T2
2 is easily done with access to the dual Weak Pigeonhole Principle for polynomial-time140

functions, a principle which is known to be available in T2
2. In more detail, CSH follows from SCSH in PV1,141

while SCSH can be established in theory APC1, which is contained in T2
2.142

Finally, in the proof of Theorem 3 we formalize in PV1 that the parity function on n bits can be computed143

by formulas of size O(n2) and require formulas of size Ω(n3/2). This yields in PV1 a proof of FSH[a, b, n0]144

for any choice of parameters a > 2, large enough n0, and b = 3/2. The upper bound on the complexity145

of parity follows from a straightforward formalization of the correctness of the formula obtained via a146

divide-and-conquer procedure. On the other hand, in order to show the formula lower bound we formalize147

Subbotovskaya’s argument [Sub61] based on the method of restrictions. To implement the proof in PV1, we148

directly define an efficient refuter that given a small formula outputs an input string where it fails to compute149

the parity function. The correctness of the refuter is established by induction using an induction principle150

available in the theory S12. We then rely on a conservation result showing that the proof can also be done in151

PV1. A detailed exposition of the argument appears in Section 4.152

Acknowledgements. We thank Emil Jeřábek for a discussion about witnessing theorems in bounded arith-153

metic. This work received support from the Royal Society University Research Fellowship URF\R1\191059;154

the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre for Discrete Mathematics and155

its Applications (DIMAP) at the University of Warwick.156

2 Preliminaries157

2.1 Complexity Theory158

We employ standard definitions from complexity theory, such as basic complexity classes, Boolean159

circuits, and Boolean formulas (see, e.g., [AB09]).160

Let N represent the set of non-negative integers. For any a ∈ N, let |a| denote the length of its binary161

representation, defined as |a| ≜ ⌈log2(a + 1)⌉. For a constant k ≥ 1, a function f : Nk → N is said to162

be computable in polynomial time if f(x1, . . . , xk) can be computed in time polynomial in |x1|, . . . , |xk|.163

For convenience, we might write |x⃗| ≜ |x1|, . . . , |xk|. The class FP denotes the set of polynomial-time164

computable functions. Although the definition of polynomial time typically refers to a machine model,165

FP can also be defined in a machine-independent manner as the closure of a set of base functions F (not166

described here) under composition and limited recursion on notation. A function f(x⃗, y) is defined from167

functions g(x⃗), h(x⃗, y, z), and k(x⃗, y) by limited recursion on notation if168

f(x⃗, 0) = g(x⃗)

f(x⃗, y) = h(x⃗, y, f(x⃗, ⌊y/2⌋))
f(x⃗, y) ≤ k(x⃗, y)
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for every sequence (x⃗, y) of natural numbers. Cobham [Cob65] established that FP is the smallest class169

of functions that contains the base functions F and is closed under composition and limited recursion on170

notation.171

2.2 Bounded Arithmetic172

2.2.1 Logical Theories173

We recall the definitions of some standard theories of bounded arithmetic. For more details, the reader174

can consult [Kra95, CN10, Kra19].175

Cook’s Theory PV1 [Coo75]. The first-order theory PV is designed to model the set N of natural numbers176

with the standard interpretations for constants and function symbols like 0,+,×, etc. The vocabulary (lan-177

guage) of PV, denoted LPV, includes a function symbol for each polynomial-time algorithm f : Nk → N,178

where k is any constant. These function symbols and their defining axioms are derived using Cobham’s char-179

acterization of polynomial-time functions discussed above. PV also includes an induction axiom scheme180

that simulates binary search, and it can be shown that it allows induction over quantifier-free formulas (i.e.,181

polynomial-time predicates).182

PV can be formulated with all axioms as universal formulas (i.e., ∀x⃗ ϕ(x⃗), where ϕ is free of quanti-183

fiers). Thus, PV is a universal theory. Although the definition of PV is quite technical, the theory is fairly184

robust and the details of its definition are often unnecessary for practical purposes. In particular, PV has an185

equivalent formalization that does not rely on Cobham’s result [Jeř06].186

Jeřábek’s Theory APC1 [Jeř04, Jeř05, Jeř07]. APC1 extends PV with the dual Weak Pigeonhole Prin-
ciple (dWPHP) for PV functions:

APC1 ≜ PV ∪ {dWPHP(f) | f ∈ L(PV)}.

Each sentence dWPHP(f) postulates that, for every length n = |N | and for every choice of z⃗, there is187

y < (1 + 1/n) · 2n such that f(z⃗, x) ̸= y for every x < 2n. It is known that APC1 is contained in T2
2188

[MPW02].189

Buss’s Theories Si2 and Ti
2 [Bus86]. The language LB for these theories includes predicate symbols =190

and ≤, constant symbols 0 and 1, and function symbols S (successor), +, ·, ⌊x/2⌋, |x| (interpreted as the191

length of x), and # (interpreted as x#y = 2|x|·|y|, known as “smash”).192

Recall that a bounded quantifier is a quantifier of the form Qy ≤ t, where Q ∈ {∃, ∀} and t is a term193

not involving y. Similarly, a sharply bounded quantifier is one of the form Qy ≤ |t|. A formula where each194

quantifier appears bounded (or sharply bounded) is called a bounded (or sharply bounded) formula.195

We can create a hierarchy of formulas by counting alternations of bounded quantifiers. The class Πb
0 =196

Σb
0 contains the sharply bounded formulas. Recursively, for each i ≥ 0, the classes Σb

i and Πb
i are defined197

by the quantifier structure of the sentence, ignoring sharply bounded quantifiers. For instance, if φ ∈ Σb
0198

and ψ ≜ ∃y ≤ t(x⃗) φ(y, x⃗), then ψ ∈ Σb
1. For the general case of the definition, see [Kra95]. It is known199

that for each i ≥ 1, a predicate P (x⃗) is in Σp
i (the i-th level of the polynomial hierarchy) if and only if there200

is a Σb
i -formula that agrees with it over N.201

These theories share a common set of finitely many axioms, BASIC, which postulate the expected202

arithmetic behavior of the constants, predicates, and function symbols. The only difference among the203

theories is the type of induction axiom scheme each one postulates.204
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Ti
2 is a theory in the language LB that extends BASIC by including the induction axiom IND:

φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)

for all Σb
i -formulas φ(a). The formula φ(a) may contain other free variables in addition to a.205

Si2 is a theory in the language LB that extends BASIC by including the polynomial induction axiom
PIND:

φ(0) ∧ ∀x (φ(⌊x/2⌋) → φ(x)) → ∀xφ(x)

for all Σb
i -formulas φ(a). The formula φ(a) may contain other free variables in addition to a.206

Theory S12(PV). When proving some results in S12, it is often convenient to use a more expressive vo-207

cabulary that easily describes any polynomial-time function. This can be done in a conservative manner,208

meaning the power of the theory is not increased. Specifically, let Γ be a set of LB-formulas. We say that209

a polynomial-time function f : Nk → N is Γ-definable in S12 if there exists a formula ψ(x⃗, y) ∈ Γ such that210

the following conditions are met:211

(i) For every a⃗ ∈ Nk, f (⃗a) = b if and only if N |= φ(⃗a, b).212

(ii) S12 ⊢ ∀x⃗ (∃y (φ(x⃗, y) ∧ ∀z (φ(x⃗, z) → y = z))) .213

Every function f ∈ FP is Σb
1-definable in S12. By incorporating all functions in FP into the vocabulary214

of S12 and extending the axioms of S12 with their defining equations, we obtain a theory S12(PV). This215

theory allows polynomial-time predicates to be referred to using quantifier-free formulas. S12(PV) remains216

conservative over S12, meaning any LB-sentence provable in S12(PV) is also provable in S12. Finally, it is217

known that S12(PV) proves the polynomial induction scheme for both Σb
1-formulas and Πb

1-formulas within218

the extended vocabulary.219

2.2.2 The KPT Witnessing Theorem220

The following witnessing theorem (a variant of Herbrand’s theorem) is proved in [KPT91] (cf. also221

[Kra95, Theorem 7.4.1]) for universal theories (like the theory PV1).222

Theorem 4 (KPT Theorem for ∀∃∀∃ sentences). Let T be a universal theory with vocabulary L. Let φ be
an open L-formula, and suppose that

T ⊢ ∀x ∃y ∀z ∃w φ(x, y, z, w).

Then there is a finite sequence s1, . . . , sk of L-terms such that

T ⊢ ∀x, z1, . . . , zk
(
ψ(x, s1(x), z1) ∨ ψ(x, s2(x, z1), z2) ∨ · · · ∨ ψ(x, sk(z1, . . . , zk−1), zk)

)
,

where
ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

For completeness, we describe a proof of Theorem 4 in Appendix A.223

We can also apply the KPT Theorem to each theory Ti
2 (for i ≥ 1) using a conservative extension of224

the theory that admits a universal axiomatization. The corresponding theory is called PVi+1 [KPT91]. In225

PVi+1, each term is equivalent to an FPΣp
i function over the standard model. This leads to the following226

result.227
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Theorem 5 (Consequence of the KPT Theorem for Theory Ti
2). Let i ≥ 1, φ(x, y, w, z) be a Πb

i -formula,
and suppose that

Ti
2 ⊢ ∀x ∃y ∀z ∃w φ(x, y, w, z).

Then there is a finite sequence f1, . . . , fk of function symbols, each corresponding to an FPΣp
i function, such

that

N |= ∀x, z1, . . . , zk
(
ψ(x, f1(x), z1) ∨ ψ(x, f2(x, z1), z2) ∨ · · · ∨ ψ(x, fk(z1, . . . , zk−1), zk)

)
,

where
ψ(x, y, z) ≜ ∃w φ(x, y, z, w).

3 Circuit Size Hierarchies in Bounded Arithmetic228

3.1 Explicit Circuit Lower Bounds from Provability in PV1 and T1
2229

In this section, we prove Theorem 1 Items (ii) and Items (iii).230

Theorem 6 (Theorem 1 Item (iii)). If there are rationals a > b > 1 and n0 ∈ N such that

PV1 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ P such that L /∈ SIZE[n1+ε].231

Proof. Towards a contradiction, suppose that PV1 ⊢ CSH[a, b, n0] for rationals a > b > 1 and some232

constant n0 and that P ⊆
⋂

ε>0 SIZE[n
1+ε]. The sentence CSH[a, b, n0] has the form ∀∃∀∃:233

CSH[a, b, n0] ≜ ∀n ≥ n0 ∈ Log, ∃ circuit D ∀ circuit C ψa,b(n,D,C) ,

where ψa,b(n,D,C) is the existential formula:234

ψa,b(n,D,C) ≜ ∃x |x| ≤ n ∧ SIZE(D) ≤ na ∧ (SIZE(C) ≤ nb → D(x) ̸= C(x)).

Therefore, we can apply the KPT Theorem (Theorem 4), which provides PV1-terms, equivalently FP func-235

tions, s1, . . . , sk, where k is a constant, such that236

N |= ψa,b(n, s1(1
(n)), C1) ∨ ψa,b(n, s2(1

(n), C1), C2) ∨ · · · ∨ ψa,b(n, sk(1
(n), C1, . . . , Ck−1), Ck). (1)

In the relation above the circuits C1, . . . , Ck are universally quantified.237

Next, we use P ⊆
⋂

ε>0 SIZE[n
1+ε] to refute each of these disjuncts. We start by considering the fol-238

lowing language, D-Eval:239

240

Input: A string x and a sequence ⟨C1, C2, . . . , Cr⟩ of r ≤ k − 1 circuits
1 Define n ≜ |x|;
2 Simulate sr+1(1

(n), C1, . . . , Cr) and interpret the output as a Boolean circuit D : {0, 1}n → {0, 1};
// We assume w.l.o.g. that D is a valid n-bit circuit of size

≤ na, since otherwise the disjunct is trivially false.
3 Evaluate D on input x and output the result.

Algorithm 1: The pseudocode of an algorithm that decides the language D-Eval.

241
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D-Eval is in P due to the fact that s1, . . . , sk ∈ FP and circuit evaluation is in FP. By our assumption
on the circuit complexity of the complexity class P, for every input length m and every ε > 0, D-Eval ∈
SIZE[m1+ε], so we can choose

ε0 ≜ b1/(2k) − 1 > 0

and have D-Eval ∈ SIZE[mb1/(2k) ]. We also define the constants

ϵi ≜ bi/k and δi ≜ b(2i−1)/(2k)

for i = 1, . . . , k. Note that ϵi = (1 + ε0)δi and δi+1 > ϵi.242

We start by refuting ψa,b(n, s1(1
(n)), C1). We consider inputs of the form x, λ to D-Eval, where λ is243

the empty sequence. Then the input has length n + c , where c = O(log n) accounts for the overhead in244

the encoding of the input. We consider the circuit C∗
1 ∈ SIZE[(n + c)1+ε0 ], which evaluates as D-Eval245

on inputs of length n + c, and we fix the input variables not related to x to represent the empty sequence.246

The resulting circuit has as input an n-bit string x and computes according to s1(1(n)) by definition of the247

D-Eval algorithm. For sufficiently large n, we have that n + c ≤ nδ1 ⇒ (n + c)1+ε0 ≤ n(1+ε0)δ1 = nϵ1 ,248

therefore we have the circuit C∗
1 ∈ SIZE[nϵ1 ] which agrees with the circuit s1(1(n)) on all n-bit inputs.249

Since ϵ1 ≤ b, we have that N ̸|= ψa,b(n, s1(1
(n)), C∗

1 ).250

We can apply a similar argument to the next disjunct using the aforementioned circuit C∗
1 . In more251

detail, we consider the input (x, ⟨C∗
1 ⟩) on D-Eval, which has length m = n+ 9nϵ1 log(nϵ1) + c ≤ nδ2 for252

sufficiently large n due to δ2 > ϵ1, and a corresponding circuit C∗
2 ∈ SIZE[m1+ε0 ] provided by the circuit253

upper bound hypothesis. Similarly, we can fix the nϵ1 log(nϵ1) + c variables not related to the input string254

x. This provides an n-bit circuit C∗
2 ∈ SIZE[nϵ2 ] that computes according to the circuit s2(1(n), C∗

1 ), due to255

the definition of the D-Eval algorithm. Since ϵ2 < b, we have that N ̸|= ψa,b(n, s2(1
(n), C∗

1 ), C
∗
2 ).256

Inductively, if we have circuits C∗
1 , C

∗
2 , . . . , C

∗
i for some i ≤ k − 1 of sizes at most nϵ1 , nϵ2 , . . . , nϵi ,257

respectively, we consider the input (x, ⟨C∗
1 , . . . , C

∗
i ⟩) toD-Eval, which has lengthm = n+9nϵ1 log(nϵ1)+258

· · · + 9nϵi log(nϵi) + c ≤ nδi+1 for sufficiently large n. Therefore, by taking a corresponding m1+ε0-259

size circuit for D-Eval and fixing all the inputs except for x, we get the circuit C∗
i+1 ∈ SIZE[nϵi+1 ] ⊆260

SIZE[nb] which agrees with the circuit si+1(1
(n), C∗

1 , . . . , C
∗
i ) on all n-bit inputs. Consequently, N ̸|=261

ψa,b(n, si+1(1
(n), C∗

1 , . . . , C
∗
i ), C

∗
i+1).262

Overall, we can refute all disjuncts in Equation (1), which gives us a contradiction. This completes the263

proof.264

Theorem 7 (Theorem 1 Item (ii)). If there are rationals a > b > 1 and n0 ∈ N such that

T1
2 ⊢ CSH[a, b, n0] ,

then there is a constant ε > 0 and a language L ∈ PNP such that L /∈ SIZE[n1+ε].265

Proof. In this case, provability in T1
2 provides by the KPT Theorem (Theorem 5) functions s1, . . . , sk which266

are in FPNP instead of FP as in the previous proof. Therefore, the algorithm D-Eval is in PNP and we use267

the upper bound PNP ⊆
⋂

ε>0 SIZE[n
1+ε] to get a contradiction in the same way as above.268

Note that in the arguments above we have no control over the constant ε > 0. It depends on the269

number of disjuncts obtained from the KPT Theorem, which depends on the supposed proof of the hierarchy270

sentence.271
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3.2 Extracting All the Hardness from Proofs of a Succinct Hierarchy Theorem272

In this section, we prove Theorem 2 Item (ii).273

Theorem 8 (Theorem 2 Item (ii)). If there are rationals a > b > 1 and a constant n0 ∈ N such that

T1
2 ⊢ SCSH[a, b, n0] ,

then there is a language L ∈ PNP such that L /∈ SIZE[nb].274

Proof. The main idea here is to use the proof of SCSH in order to define a Turing machine M which runs275

in polynomial time using an NP oracle and its language is hard against nb-size circuits.276

Starting from T1
2 ⊢ SCSH[a, b, n0], we see that the structure of the sentence is ∀∃∀∃:277

SCSH[a, b, n0] ≜ ∀n ≥ n0 ∈ Log, ∃ collection F , ∀ circuit C ϕa,b(n,F , C),

where ϕa,b(n,F , C) is the formula that states that F is a collection {(x1, b1), . . . , (xℓ, bℓ)} with ℓ ≤ na,278

where |xi| = n and |bi| = 1, and that if C is a circuit on n variables and of size ≤ nb, then there is some279

i ∈ [ℓ] such that C(xi) ̸= bi (we can move the existential quantifier at the front of the formula).280

Thus, by the KPT Theorem (Theorem 5), there are FPNP functions f1, . . . , fk, where k is a fixed con-281

stant, such that282

N |= ϕa,b(n, f1(1
(n)), C1) ∨ ϕa,b(n, f2(1(n), C1), C2) ∨ · · · ∨ ϕa,b(n, fk(1(n), C1, . . . , Ck−1), Ck). (2)

From the relation above, we can see that one of the functions f1, . . . , fk will output a collection that283

refutes every circuit of size ≤ nb. If it is not f1, then there is a counterexample circuit C1, which is used as284

extra input in f2 and so on. Since f1, . . . , fk are in FPNP, we can simulate this procedure in a PNP Turing285

machine M :286

287

Input: A bit-string x
1 Define n ≜ |x|;
2 for i = 1, . . . , k do
3 Simulate fi with input 1(n) and, if i > 1, C1, . . . , Ci−1. Interpret the output as a collection

F = {(x1, b1), . . . , (xℓ, bℓ)} with ℓ = na;
4 Check with an NP oracle whether there exists a circuit C of size ≤ nb, such that C(xi) = bi for

all i ∈ [ℓ];
5 If not or if i = k, exit the for-loop with the current F ;
6 If there is such a circuit, then use the NP oracle to find it and name it Ci.
7 end
8 If the pair (x, 1) is in the collection F , then accept. Else reject.

Algorithm 2: The Turing machine Ma,b, whose language is hard for nb-size circuits.

288

It is easy to see that the language L(Ma,b) recognised by the Turing machine Ma,b, is in PNP. It suffices289

to show that L(Ma,b) ̸∈ SIZE[nb].290

Consider a circuit C ∈ SIZE[nb]. Also, assume that the for-loop in Algorithm 2 ends in the r-th it-291

eration with r ≤ k. We fix the circuits C1, C2, . . . , Cr−1 found by the algorithm. Then the formula292

ϕa,b(n, fr(1
(n), C1, . . . , Cr−1), C) always holds. If r < k and C did not satisfy it, then the NP oracle293

would find C as a counterexample and it would continue to the (r + 1)-th iteration. If r = k, then by the294
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construction of C1, C2, . . . , Ck−1, the formulas ϕa,b(n, fi(1(n), C1, . . . , Ci−1), Ci) for i < k do not hold,295

which means by Equation (2) that ϕa,b(n, fk(1(n), C1, . . . , Ck1), C) is true.296

Since F ≡ fr(1
(n), C1, . . . , Cr−1), from ϕa,b(n,F , C), we get that there is some i ∈ [ℓ], such that297

C(xi) ̸= bi. However, if bi = 1, then xi ∈ L(Ma,b), and if bi = 0, then xi ̸∈ L(Ma,b). In both cases, the298

circuit C fails to recognise the language L(Ma,b), and the proof is complete.299

3.3 Formalization in T2
2300

In this section, we prove Theorem 1 Item (i) and Theorem 2 Item (i). To achieve this, we show that301

the succinct circuit size hierarchy is provable in APC1, which is contained in T2
2. We then observe that the302

circuit size hierarchy is easily provable from the succinct circuit size hierarchy.303

Theorem 9. For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

APC1 ⊢ SCSH[a, b, n0] .

In particular, SCSH[a, b, n0] is provable in T2
2.304

Proof. We define the polynomial-time function, f , which takes as input the description of a circuit, C, of305

size nb, which means that the length of the description of C is 9nb log nb, and outputs a bit string y of length306

na with the property that for all i = 0, 1, . . . , na − 1, yi = C(i).307

The correctness of the polynomial-time algorithm f is provable in PV1. In other words,308

PV1 ⊢ ∀n ∈ Log ( |x| ≤ 9nb log nb ∧ |y| ≤ na ) → [ |f(x)| ≤ na ∧ (f(x) = y ↔ ∀i < na yi = Eval(x, i))].
(3)

The quantifier ∀i ≤ na is sharply bounded, so this formula is provable in PV1.309

The theory APC1 includes the dWPHP axiom for all PV functions with input length n and output length310

n+ 1, or equivalently input length n and output length m with n < m. From the first part of Equation (3),311

the input length of f is 9nb log nb, while the output length is na. Furthermore, it is provable in PV1 that312

there is some constant n0, such that ∀n ≥ n0 n
a > 9nb log nb. Therefore, we can use the axiom:313

dWPHP(f) ≜ ∀n ≥ n0 ∃y (|y| = na) ∀x (|x| = 9nb log nb) f(x) ̸= y (4)

Every circuit of size nb can be described by a string of size nb log nb, which means that

∀C ∈ SIZE[nb] |C| ≤ 9nb log nb.

Also, from the second part of Equation (3), using the notation for the circuit C, we get that

f(C) ̸= y ↔ ∃i < na C(i) ̸= yi.

Substituting the last two relations to Equation (4), we get that314

APC1 ⊢ ∀n ≥ n0 ∈ Log ∃y (|y| = na) ∀C ∈ SIZE[nb] ∃i < na C(i) ̸= yi,

which is equivalent with SCSH[a, b, n0].315

Corollary 10. For every choice of rationals a > b > 1 and for every large enough n0 ∈ N,

T2
2 ⊢ CSH[a+ 1, b, n0] .
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Proof. Since a > b, there is some rational ϵ > 0, such that a − ϵ > b. From Theorem 9, we know that316

SCSH[a− ϵ, b, n0] is provable in APC1 for every large enough n0. Therefore, if we prove that317

PV1 ⊢ ∃ collection F = {(x1, b1), . . . , (xℓ, bℓ)} of size ℓ ≤ na−ϵ with xi ̸= xj for distinct i, j ∈ [ℓ] →
∃ circuit D : {0, 1}n → {0, 1} of size ≤ na+1, ∀i ∈ [ℓ] D(xi) = bi,

we can easily deduce that APC1 ⊢ CSH[a+ 1, b, n0]. The same holds also for T2
2.318

Therefore, it is sufficient to argue in PV1 that there is a polynomial-time function Circuit(F), which
given the collection F , outputs a circuitD : {0, 1}n → {0, 1} of the required size such that ∀i ∈ [ℓ] D(xi) =
bi. The construction of the circuit D is pretty straightforward: For every n-bit string xi, such that (xi, 1) ∈
F , we construct the term T i, which is the conjunction of the n bits of xi (we put xj if the jth bit of xi is 1
and ¬xj if the jth bit of xi is 0). Then we make the DNF

D ≜
∨

(xi,1)∈F

T i,

which agrees with the collection F , and viewed as a circuit has size at most na−ϵ(n+1) (at most n ∧-gates319

for each one of the at most na terms and at most na ∨-gates for the final disjunction). The correctness of the320

resulting circuit is easily provable in PV1, while for large enough n0, we have ∀n ≥ n0 n
a−ϵ(n+1) ≤ na+1.321

Hence, we have the desired result.322

3.4 On the Gap Between T1
2 and T2

2323

We noticed above that it is possible to prove the circuit size hierarchy in the theory T2
2. In contrast, it324

seems difficult to implement a similar proof in the theory T1
2. The reason behind this difficulty is connected325

to the proof complexity of the dual Weak Pigeonhole Principle. If there is a proof of the circuit size hier-326

archy in T1
2, either it uses an approach that relies on a principle that is not equivalent to dWPHP(PV), or327

dWPHP(PV) is also provable in T1
2.328

Paris, Wilkie, and Woods [PWW88] were the first to establish the provability of dWPHP(PV) in Buss’s329

hierarchy. Subsequently, Maciel, Pitassi, and Woods [MPW02] provided an alternative proof with an explicit330

inclusion of the principle in T2
2. In this section, we explain why the same argument is not available in T1

2.331

(Their original proof is more general, and an exposition can be found in [Kra19].)332

Assume that we have a PV-function g′ : {0, 1}n → {0, 1}n+1 with n ∈ Log or equivalently g′ : N →333

2N , such that ¬dWPHP2N
N (g′) holds. It is easy even in S12(PV) to extend this to a new function g : N → N2,334

such that ¬dWPHPN2

N (g) ≜ ∀y < N2 ∃x < N g(x) = y holds.335

For ℓ = 0, . . . , |N |, we consider all sequences w ∈ [N ]ℓ. We extend a sequence by a new element336

using the operation ⌢ (e.g., (a1, a2, a3)⌢ a4 = (a1, a2, a3, a4)). For all sequences w, we define functions337

gw : N/2ℓ → N2 recursively as follows:338

• If ℓ = 0, g∅ = g.339

• For i < N , gw⌢i(x) = y if ∃z < N such that g(z) = y∧ gw(x) = iN + z, otherwise output ∅. (Here340

∅ is just a fixed symbol that we use to denote “error” or that the function is undefined.)341

• gw⌢N (x) = y if ∃z < N ∃u < N such that g(z) = y∧gw(x+N/2ℓ+1) = zN+u, otherwise output342

∅.343

13



Note that the formula gw(x) = y is Σb
1-definable and that gw(x) cannot have more than one value.344

The key step of the proof is showing that345

S32 ⊢ ¬dWPHPN2

N (g) → ∃w ∈ [N ]ℓ ¬dWPHPN2

N/2l(gw). (5)

The right-hand size can be also written as346

∃w ∈ [N ]ℓ ∀y < N2 ∃x < N/2ℓ gw(x) = y,

which is a Σb
3 formula. Therefore, for the proof of Equation (5), we use Σb

3-LIND, which is available in S32.347

The intuition behind the inductive step is that if we split the domain into two equal intervals and the range348

into N intervals, from the surjectivity of g and gw, either the first domain interval has all its values into the349

ith range interval, which gives us the new sequence w ⌢ (i− 1), or the second domain interval has value at350

each one of the range intervals, which gives us the new sequence w ⌢ n.351

To complete the argument, plugging ℓ = |N | in Equation (5), we get a surjective function from 1 to N2,352

which is a clear contradiction when N > 1. Therefore, S32 ⊢ dWPHP(g), and since S32 is ∀Σb
3-conservative353

over T2
2, we also have T2

2 ⊢ dWPHP(g).354

The bottleneck to implement the proof in T1
2 is the quantifier complexity of the inductive statement355

associated with Equation (5). Another barrier for such a proof in T1
2 is the fact that for an arbitrary relation356

R, dWPHP(R) is not provable in S22(R) [Kra92], so a proof of dWPHP(PV) has to use some properties of357

PV functions.358

4 Provability of Formula Size Bounds in PV1359

In this section, we prove Theorem 3. To achieve this, we establish that:360

1. The parity function on n bits requires formulas of size ≥ n3/2 (Section 4.1).361

2. The parity function on n bits can be computed by formulas of size O(n2) ≤ na for any fixed rational362

a > 2 and large enough n (Section 4.2).363

3. Consequently, the formula size hierarchy holds with parameters a > 2 and b = 3/2, provided that n0364

is large enough (Section 4.3).365

4.1 Subbotovskaya’s Lower Bound366

4.1.1 High-Level Details of the Formalization367

In this section, we sketch a formalization in PV1 of the proof that the parity function on n bits requires368

Boolean formulas of size ≥ n3/2 [Sub61].3 We adapt the argument presented in [Juk12, Section 6.3], which369

proceeds as follows:370

1. [Juk12, Lemma 6.8]: Given a Boolean formula F on n-bit inputs, it is possible to fix one of its
variables so that the resulting formula F1 satisfies

Size(F1) ≤ (1− 1/n)3/2 · Size(F ).
3For concreteness, we let the size of a Boolean formula F be the number of leaves of F labeled by an input literal. We allow

leaves that are labeled by constants, but we do not charge for them. Consequently, a constant function has formula complexity 0,
while a non-constant function has formula complexity at least 1.
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(In order to pick the variable to be restricted and its value, one first “normalizes” the formula F , as371

implicitly described in [Juk12, Claim 6.9].)372

2. [Juk12, Theorem 6.10]: By applying this result ℓ ≜ n− k times, it is possible to obtain a formula Fℓ

on k-bit inputs such that

Size(Fℓ) ≤ Size(F ) · (1− 1/n)3/2 · (1− 1/(n− 1))3/2 . . . (1− 1/(k+1))3/2 = Size(F ) · (k/n)3/2.

3. [Juk12, Example 6.11]: If the initial formula F computes the parity function, by setting ℓ = n− 1 we
obtain

1 ≤ Size(Fℓ) ≤ (1/n)3/2 · Size(F ),

and consequently Size(F ) ≥ n3/2.373

We recommend reading this section with [Juk12, Section 6.3] at hand. We will slightly modify the374

argument when formalizing the lower bound in PV1. In more detail, given a small formula F , we recursively375

construct (and establish correctness by induction) an n-bit input y witnessing that F does not compute376

the parity function. (Actually, for technical reasons related to the induction step, we will simultaneously377

construct an n-bit input y0n witnessing that F does not compute the parity function and an n-bit input y1n378

witnessing that F does not compute the negation of the parity function.)379

Let s(n) be a size bound and ⊕(x) be a PV function that computes the parity of the binary string380

described by x, i.e., ⊕(x) ≜ x1 ⊕ x2 ⊕ . . . ⊕ xn, where xi denotes the i-th bit of x. To simplify notation,381

we tacitly view x as a binary string. We assume that the formalization employs a well-behaved function382

symbol ⊕ such that PV1 proves the basic properties of the parity function, e.g., PV1 ⊢ ⊕(x1) = 1−⊕(x)383

and PV1 ⊢ ⊕(x0) = ⊕(x).384

We consider the following L(PV)-sentence stating that the parity function requires formulas of size at385

least s(n) for every input length n ≥ 1:386

FLBs ≜ ∀N ∀n ∀F (n = |N | ≥ 1 ∧ Size(F ) < s(n) → ∃x (|x|ℓ = n ∧ Eval(F, x) ̸= ⊕(x)) , 4

where for convenience of notation we use the function symbol |w|ℓ to compute the bit-length of the string387

represented by w (under some reasonable encoding).388

Theorem 11. Let s(n) ≜ n3/2. Then PV1 ⊢ FLBs.389

Proof. Given b ∈ {0, 1}, we introduce the function ⊕b(x) ≜ ⊕(x) + b (mod 2). In order to prove FLBs in390

PV1, we explicitly consider a polynomial-time function R(1n, F, b) with the following properties:5391

1. Let b ∈ {0, 1}.392

2. If Size(F ) < s(n) then R(1n, F, b) outputs an n-bit string ybn such that Eval(F, ybn) ̸= ⊕b(ybn).393

In other words,R(1n, F, b) witnesses that the formula F does not compute the function ⊕b over n-bit strings.394

Note that the correctness of R is captured by the bounded universal sentence:395

RefR,s ≜ ∀1n ∀F (Size(F ) < s(n) → |y0n|ℓ = |y1n|ℓ = n ∧ F (y0n) ̸= ⊕0(y0n) ∧ F (y1n) ̸= ⊕1(y1n)) ,

4To simplify notation, we ommit from the sentence FLBs and in other parts of the exposition certain straightforward conditions,
such as checking that F represents a valid formula and that it computes over n-bit input strings.

5For convenience, we often write 1n instead of explicitly considering parameters N and n = |N |. We might also write just
F (x) instead of Eval(F, x).
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where we employed the abbreviations y0n ≜ R(1n, F, 0) and y1n ≜ R(1n, F, 1). Our plan is to define R and396

show that PV1 ⊢ RefR,s. Note that this implies FLBs in PV1. Jumping ahead, the correctness of R(1n, F, b)397

will be established by polynomial induction on N (equivalently, induction on n = |N |). Since RefR,s is a398

universal sentence and S12 is ∀Σb
1-conservative over PV1, polynomial induction for NP and coNP predicates399

(admissible in S12; see, e.g., [Kra95, Section 5.2]) is available during the formalization. More details follow.400

The procedure R(1n, F, b) makes use of a few polynomial-time sub-routines (discussed below) and is401

defined in the following way:402

403

Input: 1n for some n ≥ 1, formula F over n-bit inputs, b ∈ {0, 1}.
1 Let s(n) ≜ n3/2. If Size(F ) ≥ s(n) return “error”;
2 If Size(F ) = 0, F computes a constant function bF ∈ {0, 1}. In this case, return the n-bit string

ybn ≜ yb10
n−1 such that ⊕b(yb10

n−1) ̸= bF ;
3 Let F̃ ≜ Normalize(1n, F );
// F̃ satisfies [Juk12, Claim 6.9], Size(F̃ ) ≤ Size(F ),

∀x ∈ {0, 1}n F (x) = F̃ (x).

4 Let ρ ≜ Find-Restriction(1n, F̃ ), where ρ : [n] → {0, 1, ⋆} and |ρ−1(⋆)| = n− 1;
// ρ restricts a suitable variable xi to a bit ci, as in [Juk12,

Lemma 6.8].

5 Let F ′ ≜ Apply-Restriction(1n, F̃ , ρ). Moreover, let b′ ≜ b⊕ ci and n′ ≜ n− 1;
// F ′ is an n′-bit formula; ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci).

6 Let yb
′

n′ ≜ R(1n
′
, F ′, b′) and return the n-bit string ybn ≜ yb

′
n′ ∪ yi 7→ ci;

Algorithm 3: Refuter Algorithm R(1n, F, b).

404

Normalize(1n, F ) and its properties (in S12). We say that a subformula G of F is a neighbor of a leaf z405

if either z ∧ G or z ∨ G is a subformula of F . We say that a formula F over variables {x1, . . . , xn} is in406

normal form if for every i ∈ [n] and every literal z ∈ {xi, xi}, if z is a leaf of F and G is a neighbor of z in407

F , then G does not contain the variable xi.408

Lemma 12. There is a polynomial-time function Normalize(1n, F ) that given a Boolean formula F over n409

input variables, outputs a formula F̃ over n input variables such that the following holds:410

(i) Size(F̃ ) ≤ Size(F ).411

(ii) For every input x ∈ {0, 1}n, F̃ (x) = F (x).412

(iii) F̃ is in normal form.413

(iv) F̃ is either a constant 0 or 1, or F̃ contains no leaves labeled by constants 0 and 1.414

Moreover, the correctness of Normalize(1n, F ) is provable in S12.415

Proof Sketch. It is enough to verify that the proof of [Juk12, Claim 6.9] provides such a polynomial-time416

function and that its correctness can be established in S12. In more detail, if F is not in normal form, we can417

efficiently compute a literal z ∈ {xi, xi} and a neighbor G of z that violates the corresponding property.418

As shown in [Juk12, Claim 6.9], we can fix any leaf z′ ∈ {xi, xi} in G by an appropriate constant c so419

that the resulting formula F1 satisfies conditions (i) and (ii) of Lemma 12. After at most ℓ ≜ Size(F )420

16



iterations, we obtain a sequence F1, . . . , Fℓ of formulas such that F̃ ≜ Fℓ satisfies conditions (i), (ii), and421

(iii) of the lemma. Moreover, condition (iv) can always be guaranteed by simplifying the final formula,422

i.e., by replacing subformulas 0 ∨ G by G, 1 ∨ G by 1, 0 ∧ G by 0, and 1 ∧ G by G. The correctness of423

F̃ ≜ Normalize(1n, F ) can be established by polynomial induction for coNP predicates (i.e., Πb
1 formulas),424

which is available in S12.425

Find-Restriction(1n, F̃ ) and its properties (in S12). We argue in S12 and follow the argument from the426

proof of [Juk12, Lemma 6.8]. Let F̃ be a formula over n input variables in normal form. We focus on the427

non-trivial case, and assume that n ≥ 2, Size(F̃ ) ≥ 2, and that F̃ contains no leaves labeled by constants.428

Let Count(1n, F, i) be a polynomial-time algorithm that outputs the number of leaves of F that contain429

the variable xi (including its appearances as xi). Let w = (w1, . . . , wn) be the corresponding sequence of430

multiplicities, i.e., wi ≜ Count(1n, F, i). Note that
∑

iwi = s̃, where s̃ ≜ Size(F̃ ).431

We claim that S12 proves the existence of an index i ∈ [n] such that wi ≥ s̃/n. First, for each j ∈ [n], we432

define the cumulative sum vj ≜
∑

i≤j wj . Let v ≜ (v0, v1, . . . , vn) be the corresponding sequence, where433

we set v0 ≜ 0. Notice that vn = s̃. Since v contains n + 1 elements, it can be efficiently computable from434

w. We now argue by induction on n that for some index j ∈ [n] we have vj − vj−1 ≥ vn/n. This implies435

that wj = vj − vj−1 ≥ vn/n = s̃/n, as desired.436

If n = 1, then v1−v0 = v1 = v1/1 and the result holds for j = 1. Assume the result holds for n−1, and437

consider vn. If vn − vn−1 ≥ vn/n, we can pick j = n and we are done. Otherwise, vn−1 ≥ vn − vn/n =438

vn(n−1)/n. By the induction hypothesis, there is an index j ∈ [n−1] such that vj−vj−1 ≥ vn−1/(n−1).439

Using the lower bound on vn−1, we get that vj − vj−1 ≥ vn/n, which concludes the proof.440

Consequently, S12 proves the existence of a variable xi which appears t ≥ s̃/n times as a leaf of F̃ . Let
z1, . . . , zt be the leaves of F̃ labeled by either xi or xi. Recall that we assume that n ≥ 2, Size(F̃ ) ≥ 2, and
that F̃ satisfies conditions (iii) and (iv) of Lemma 12. Therefore, each leaf zj has a neighbor subformula Gj

in F̃ that contains some leaf labeled by a literal not in {xi, xi}. For this reason, if we set xi to an appropriate
constant cj , Gj will disappear from F , thereby erasing at least another leaf not among z1, . . . , zt. As in
the proof of [Juk12, Lemma 6.8], if we let c ∈ {0, 1} be the constant that appears more often among
c1, . . . , ct and set xi 7→ c in the restriction ρ, all the leaves z1, . . . , zt will be eliminated from F̃ together
with at least t/2 additional leaves.6 Thus the total number of eliminated leaves, which we specify using a
polynomial-time function NumRemoved(1n, F̃ , ρ), satisfies

NumRemoved(1n, F̃ , ρ) ≥ t+
t

2
≥ 3s̃

2n
.

Overall, it follows that

S12 ⊢ F̃ = Normalize(1n, F ) ∧ ρ = Find-Restriction(1n, F̃ ) → NumRemoved(1n, F̃ , ρ) ≥ 3

2n
· Size(F̃ ) .

Apply-Restriction(1n, F̃ , ρ) and its properties (in S12). We only sketch the details. This is simply a441

polynomial-time algorithm that, given a formula F̃ on n input variables and a restriction ρ : [n] → {0, 1, ∗}442

with |ρ−1(⋆)| = n − 1 (i.e., ρ restricts a single variable xi to a constant ci ∈ {0, 1}), outputs a formula F ′
443

over n − 1 input variables that sets every literal z ∈ {xi, xi} to the corresponding constant and simplifies444

6The existence of such a constant c can be proved in S1
2 in a way that is similar to the proof that some variable xi appears in at

least s̃/n leaves.
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the resulting formula, e.g., replaces subformulas 0 ∨ G by G, 1 ∨ G by 1, 0 ∧ G by 0, and 1 ∧ G by G.445

Additionally, for F ′ = Apply-Restriction(1n, F̃ , ρ), we have446

S12 ⊢ Size(F ′) ≤ Size(F̃ )− NumRemoved(1n, F̃ , ρ) ∧ ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci) . (6)

Using the previously computed bound on NumRemoved(1n, F̃ , ρ) for ρ = Find-Restriction(1n, F̃ ), we447

obtain that for F̃ and F ′ defined as above (with s′ ≜ Size(F ′) and s̃ ≜ Size(F̃ )), and assuming that n ≥ 2,448

S12 ⊢ s′ ≤ s̃− 3

2n
· s′ = s̃ ·

(
1− 3

2n

)
≤ s̃ ·

(
1− 1

n

)3/2

. (7)

The last inequality uses that S12 ⊢ ∀a, a ≥ 2 → (1− 3/(2a))2 ≤ (1− 1/a)3 , which one can easily verify.449

450

Note that R(1n, F, b) runs in time polynomial in n + |F | + |b| and that it is definable in S12. Next, we451

establish the correctness R(1n, F, b) in S12 .452

Lemma 13. Let s(n) ≜ n3/2. Then S12 ⊢ RefR,s.453

Proof. We consider the formula φ(N) defined as

∀F ∀n (n = |N |∧n ≥ 1∧Size(F ) < s(n)) → (|y0n|ℓ = |y1n|ℓ = n∧F (y0n) ̸= ⊕0(y0n)∧F (y1n) ̸= ⊕1(y1n)) ,

where as before we use y0n ≜ R(1n, F, 0) and y1n ≜ R(1n, F, 1). Note that φ(N) is a Πb
1 formula. Below,

we argue that
S12 ⊢ φ(1) and S12 ⊢ ∀N φ(⌊N/2⌋) → φ(N) .

Then, by polynomial induction for Πb
1 formulas (available in S12) and using that φ(0) trivially holds, it454

follows that S12 ⊢ ∀N φ(N). In turn, this yields S12 ⊢ RefR,s.455

Base Case: S12 ⊢ φ(1) . In this case, for a given formula F and length n, the hypothesis of φ(1) is satisfied
only if n = 1 and Size(F ) = 0. Let y01 ≜ R(1, F, 0) and y11 ≜ R(1, F, 1). We need to prove that

|y01|ℓ = |y11|ℓ = 1 ∧ F (y01) ̸= ⊕0(y01) ∧ F (y11) ̸= ⊕1(y11) .

Since n = 1 and Size(F ) = 0, F evaluates to a constant bF on every input bit. The statement above is456

implied by Line 2 in the definition of R(n, F, b).457

(Polynomial) Induction Step: S12 ⊢ ∀N φ(⌊N/2⌋) → φ(N) . Fix an arbitrary N , let n ≜ |N |, and458

assume that φ(⌊N/2⌋) holds. By the induction hypothesis, for every formula F ′ with Size(F ′) < n′3/2,459

where n′ ≜ n− 1, we have460

|y0n′ |ℓ = |y1n′ |ℓ = n′ ∧ F ′(y0n′) ̸= ⊕0(y0n′) ∧ F ′(y1n′) ̸= ⊕1(y1n′) , (8)

where y0n′ ≜ R(1n
′
, F ′, 0) and y1n′ ≜ R(1n

′
, F ′, 1).461

Now let n ≥ 2, and let F be a formula over n-bit inputs of size < n3/2. By the size bound on F ,
R(1n, F, b) ignores Line 1. If Size(F ) = 0, then similarly to the base case it is trivial to check that the con-
clusion of φ(N) holds. Therefore, we assume that Size(F ) ≥ 1 and R(1n, F, b) does not stop at Line 2. Let
F̃ ≜ Normalize(1n, F ) (Line 3), ρ ≜ Find-Restriction(1n, F̃ ) (Line 4), F ′ ≜ Apply-Restriction(1n, F̃ , ρ)
(Line 5), n′ ≜ n − 1 (Line 5), and b′ ≜ b ⊕ ci (Line 5), where ρ restricts the variable xi to the bit ci.
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Moreover, for convenience, let s ≜ Size(F ), s̃ ≜ Size(F̃ ), and s′ ≜ Size(F ′). By Lemma 12 Item (i),
Equation (7), and the bound s < n3/2,

S12 ⊢ s′ ≤ s̃ · (1− 1/n)3/2 ≤ s · (1− 1/n)3/2 < n3/2 · (1− 1/n)3/2 = (n− 1)3/2 .

Thus F ′ is a formula on n′-bit inputs of size < n′3/2. Recall that for a given b ∈ {0, 1} we have b′ = b⊕ ci.462

Let yb
′

n′ ≜ R(1n
′
, F ′, b′) (Line 6). By the first condition in the induction hypothesis (Equation (8)) and463

the definition of each ybn ≜ yb
′

n′ ∪ yi 7→ ci, we have |y0n|ℓ = |y1n|ℓ = n. Below, we also rely on the last464

two conditions in the induction hypothesis (Equation (8)), Lemma 12 Item (ii), and the last condition in465

Equation (6). We derive the following statements, where b ∈ {0, 1}:466

F ′(yb
′

n′) ̸= ⊕b′(yb
′

n′) ,

F (ybn) = F ′(yb
′

n′) ,

F (ybn) ̸= ⊕b′(yb
′

n′) .

Notice that

⊕b′(yb
′

n′) = ⊕b⊕ci(yb
′

n′) = ci ⊕ (⊕b(yb
′

n′)) = ci ⊕ (⊕b(ybn)⊕ ci) = ⊕b(ybn) .

These statements imply that, for each b ∈ {0, 1}, F (ybn) ̸= ⊕b(ybn). In other words, the conclusion of φ(N)467

holds. This completes the proof of the induction step.468

As explained above, the provability of RefR,s in S12 implies its provability in PV1. Since PV1 ⊢469

RefR,s → FLBs, this completes the proof of Theorem 11.470

4.1.2 On the Low-Level Details of the Formalization471

In order to make our presentation accessible to a broader audience, in this section we provide more472

details about the formalization of algorithms and about the proofs of their basic properties. For concreteness473

and convenience, we consider the theory S12(PV), i.e., S12 extended with function symbols and axioms for474

all polynomial-time functions as in Cobham’s characterization of efficient computations. Since this theory475

is ∀Σb
1-conservative over PV1 (see Section 2.2.1), the provability of FLBs in S12(PV) yields its provability476

in PV1.477

As a concrete example, we elaborate on a sub-routine employed by some algorithms discussed in Sec-478

tion 4.1. We consider a polynomial-time function Fix(1n, F, i, b) that, given the description of a formula F479

over n input variables, a variable index i ∈ [n], and a bit b ∈ {0, 1}, replaces every leaf of F labeled by xi480

with b and every leaf of F labeled by xi with 1 − b, then returns the corresponding restricted formula F ′
481

over n− 1 input variables (without the application of formula simplification rules). Next, we provide more482

details about the specification of the procedure Fix in S12(PV) and about a proof of its correctness, i.e.,483

S12(PV) ⊢ ∀1n ∀F ∀F ′ ∀x ∀z ∀i (9)

(n ≥ 2∧|x|ℓ = n∧|z|ℓ = n−1∧1 ≤ i ≤ n∧F ′ = Fix(1n, F, i, b)) → (Eval(F ′, z) = Eval(F, z∪xi 7→ b)) ,

where z ∪ xi 7→ b denotes a function that takes (z, i, b), where z assigns bits to x1, . . . , xi−1, xi+1, . . . , xn,484

and outputs the n-bit string that agrees with z and sets xi to b.485
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On the Specification of Fix(1n, F, i, b) in S12(PV). Theory S12(PV) contains function symbols for all486

polynomial-time algorithms according to Cobham’s characterization of polynomial-time computations. Con-487

sequently, to specify Fix(1n, F, i, b) we employ a definition of this computation in Cobham’s formalism, i.e.,488

we define Fix(1n, F, i, b) using simple base functions together with composition and recursion on notation.489

In order to be completely formal (a rather cumbersome task), one would first specify how formulas are rep-490

resented by numbers and the polynomial-time functions that manipulate the corresponding representation.491

We could then interpret the binary representation of an integer as two sequence of tuples, one describing492

the edges in the binary tree representation of the formula, and another describing the labels of each node493

of the tree. Finally, Fix(1n, F, i, b) would be a routine that iterates over each leaf of F labelled by the i-th494

variable or its negation and replaces it with the appropriate constant. Using previously defined routines and495

their corresponding function symbols, a sequential algorithm of this form can be described as a recursive496

procedure in Cobham’s characterization of polynomial-time functions. Moreover, we need to argue in the497

theory that the output length of the function on a given input is bounded by a polynomial, similarly to the498

constraint in the limited recursion on notation from Cobham’s theorem.499

On the Proof of the Correctness of Fix(1n, F, i, b) in S12(PV) (Equation (9)). S12(PV) also contains500

axioms describing how the function symbols (polynomial-time functions) are obtained from each other.501

For instance, Fix(1n, F, i, b) might use in its specification a routine R that takes as input a tuple describing a502

formulaG, a bit b, and a leaf ofG and its label, replaces the label of this leaf by the constant b, and outputs the503

new formula G′. We can then reason in S12(PV) about the correctness of Fix(1n, F, i, b) (as in Equation (9))504

using the provable properties of R and of the function symbol Eval. In more detail, Eval can be defined505

recursively based on the structure of the input formula, and the base case of the proof of correctness relies506

on the properties of R and the fact that the internal evaluations of Eval(F ′, z) for F ′ = Fix(1n, F, i, b)) and507

Eval(F, z∪xi 7→ b)) agree over all leaves. Crucially, the recursive nature of the specification of polynomial-508

time functions in Cobham’s definition and in S12(PV) is compatible with the polynomial induction axioms509

available in S12(PV), in the sense that we can define recursive procedures while simultaneously proving their510

relevant properties by induction.511

4.2 Upper Bound512

In this section, we show that the parity function on n bits can be computed by formulas of size O(n2),513

provably in PV1. We can formalize this upper bound in the language of PV, defining an L(PV)-sentence514

stating that the parity function can be computed by a formula of size s(n) for every input length n ≥ 1:515

FUBs ≜ ∀N ∀n ∃F (n = |N | ≥ 1 ∧ Size(F ) < s(n) ∧ ∀x (|x| ≤ n→ Eval(F, x) = ⊕0
n(x)) .

Theorem 14. Let s(n) ≜ 4n2. Then PV1 ⊢ FUBs.516

Proof. FUBs is a ∀Σb
2 sentence and our intended theory is PV1. In order to implement some inductive517

proofs, it will be helpful to reduce the complexity of the formula. For this, we introduce a new polynomial-518

time function, ParForm(1n), which generates the desired formula that computes the parity function on n519

bits. Since it is a polynomial-time function, there is a symbol for it in PV and we can use it in the new520

formalization:521

FUB′
s ≜ ∀N ∀n (n = |N | ≥ 1∧Size(ParForm(1n)) < s(n)∧∀x (|x| ≤ n→ Eval(ParForm(1n), x) = ⊕0

n(x)) .

It is immediate that FUB′
s ⇒ FUBs, thus we focus on proving FUB′

s. We continue with the following steps:522
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1. We prove an upper bound of n2 for the formulas calculating the parity function and its negation, when523

n is a power of 2.524

2. We use this construction to derive the 4n2 upper bound for any n.525

Next, we define a polynomial-time algorithm Par(1n) which computes a formula that calculates the526

parity function on n bits and a formula that calculates the negation of the parity function on n bits, if n is a527

power of 2.528

Input: 1n for some n ≥ 1.
1 Let k ≜ |n− 1|. If n ̸= 2k (n is not a power of 2), then return “error”;
// F will compute the parity function, while F will compute its

negation
2 if k = 0 then
3 Define F to be the formula with one leaf x1 and F to be the formula with one leaf ¬x1.
4 else if k ≥ 1 then

// Construct a pair (F, F ) of formulas on input bits x1, . . . , x2k as
follows:

5 Let (F1, F1) ≜ Par(1n/2), and define a corresponding pair (F2, F2):
6 In F2 and F 2, relabel the leaves by putting x2k−1+i instead of xi for every i = 1, . . . , 2k−1;
7 Now let F ≜ (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F ≜ (F1 ∧ F2) ∨ (F 1 ∧ F 2).
8 end
9 return (F, F ).

Algorithm 4: Par(1n) outputs Boolean formulas for ⊕0
n and ⊕1

n when n is a power of 2.

529

Lemma 15. If n is a power of 2, the algorithm Par(1n) correctly outputs two formulas (F, F ) of size n2530

which calculate the parity function and its negation, provably in S12(PV).531

Proof. We split the proof of the correctness for the algorithm Par(1n) into 3 properties:532

1. ϕ1(n) ≜ F, F ∈ VALIDFORM(n), where VALIDFORM(n) is the set of formulas on n variables;533

2. ϕ2(n) ≜ Size(F ) = Size(F ) = n2;534

3. ϕ3(n) ≜ ∀x |x| ≤ n→ Eval(F, x) = ⊕0
n(x) ∧ Eval(F , x) = ⊕1

n(x).535

For now we only care about the case that n is a power of 2, so we prove these properties conditionally536

(equivalently we prove (n = (n− 1)#1) → ϕ(n)).7 That is why it suffices to use polynomial induction on537

n, which is available in S12, since our formulas are at most Πb
1.538

We skip the proof of ϕ1, which is proven by simple induction as below, using the fact that if F1, F2 are539

formulas then F1 ∧ F2 and F1 ∨ F2 are also formulas.540

Property 2: S12 ⊢ ϕ2(n). For the base case, ϕ2(1), we have k = 0, which means that the output (F, F ) ≜
Par(11) will be two formulas with one leaf each, hence

Size(F ) = Size(F ) = 1.

7It is easy to check that this is true if and only if n is a power of 2.
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For the induction step, we need S12 ⊢ ∀nϕ2(⌊n/2⌋) → ϕ2(n) . If n is not a power of 2, then the
statement is true by default. In the case of n being a power of 2, we fix k = |n − 1| and we want to prove
equivalently:

S12 ⊢ ϕ2(2k−1) → ϕ2(2
k).

Assume that ϕ2(2k−1) ≡ ϕ2(n/2) holds. From Line 8 we have that541

F = (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F = (F1 ∧ F2) ∨ (F 1 ∧ F 2), (10)

where (F1, F1) and (F2, F2) are copies of Par(1n/2). From the induction hypothesis, this means that
Size(F1) = Size(F1) = Size(F2) = Size(F2) = (n/2)2 = 22(k−1). Therefore, from (Equation (10))
and the properties of the function Size, we get

Size(F ) = Size(F1) + Size(F1) + Size(F2) + Size(F2) = 4 · 22(k−1) = 22k = n2.

Similarly for F , which means that ϕ2(2k) ≡ ϕ2(n) holds. This completes the proof of the induction for542

ϕ2.543

Property 3: S12 ⊢ ϕ3(n). Here the base case is trivial: for F ≜ x1 and x ∈ {0, 1}, then Eval(F, x) = x =544

⊕0
1(x). Similarly for F .545

For the induction step, we assume as above that n = 2k and we want to prove:

S12 ⊢ ϕ3(2k−1) → ϕ3(2
k).

We assume that ϕ2(2k−1) ≡ ϕ2(n/2) holds and we write F in the form546

F = (F1 ∨ F2) ∧ (F 1 ∨ F 2) and F = (F1 ∧ F2) ∨ (F 1 ∧ F 2),

where (F1, F1) and (F2, F2) are copies of Par(1n/2). Therefore, instead of Eval(F, x), we can calculate

Eval((F1 ∨ F2) ∧ (F 1 ∨ F 2), x).

We need to prove that Eval(F, x) = ⊕0
n(x) for all x with |x| ≤ n. So, taking one such x we can split547

its binary representation into two parts x1, x2 with lengths |x1|, |x2| ≤ n/2, such that x = (x2x1)b =548

x1 + 2n/2x2.549

The input to subformulas F2, F2 from the definition are the bits x2k−1+i for i = 1, . . . , 2k−1, which550

means that their input is x2. Similarly, the input to subformulas F1, F1 is x1. Hence, we can define551

b1 ≜ Eval(F1, x1) b3 ≜ Eval(F1, x1)

b2 ≜ Eval(F2, x2) b4 ≜ Eval(F2, x2)

From the properties of the evaluation function and the form of F , we can prove in S12 that Eval(F, x) =552

(b1 ∨ b2) ∧ (b3 ∨ b4), where the symbols ∨,∧ are used as Boolean symbols here.553

However, since |x1|, |x2| ≤ n/2 and (F1, F1) = (F2, F2) = Par(1n/2), from the induction hypothesis554

we get that555

b1 = ⊕0(x1) b3 = ⊕1(x1) = 1− b1

b2 = ⊕0(x2) b4 = ⊕1(x2) = 1− b2
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Next, it is easy to prove by checking all the 4 cases that

∀b1, b2 ∈ {0, 1} (b1 ∨ b2) ∧ ((1− b1) ∨ (1− b2)) = b1 ⊕ b2,

and as a result, we get

Eval(F, x) = (⊕0(x1))⊕ (⊕0(x2)) = ⊕0(x2x1) = ⊕0(x)

by the properties of the parity function. Similarly, we can prove that Eval(F , x) = ⊕1
n(x), which concludes556

the induction.557

For the general case, we use a simple padding argument. For a number n, we can define the number

ñ ≜ (n− 1)#1.

This number is the least power of 2 that is greater or equal to n. It is easy to see that

PV1 ⊢ n ≤ ñ < 2n.

If we replace ParForm(1n) by Par1(1
ñ) (the first coordinate of Par(1ñ)), we have by the above lemma558

that559

1. Size(ParForm(1n)) = Size(Par1(1
ñ)) = ñ2 < (2n)2 = s(n).560

2. For all x with |x| ≤ n, we have |x| ≤ ñ, which by the lemma gives us Eval(ParForm(1n), x) =561

Eval(Par1(1
ñ), x) = ⊕0

ñ(x). Since |x| ≤ n, we also have ⊕0
ñ(x) = ⊕0

n(x). Consequently, we have562

Eval(ParForm(1n), x) = ⊕0
n(x).563

These two together show that PV1 ⊢ FUB′
s and the proof is complete.564

4.3 Formula Size Hierarchy565

In this section, we provide the proof of Theorem 3.566

Theorem 16 (Theorem 3). Consider rationals a > 2 and b = 3/2, and let n0 be a large enough positive
integer. Then

PV1 ⊢ FSH[a, b, n0] .

Proof. We combine the results of Section 4.1 and Section 4.2. We argue in PV1. From Theorem 11, we get567

that568

∀n ∈ Log ∀F ∈ FORMULA[n3/2] ∃x (|x| ≤ n ∧ F (x) ̸= ⊕n(x)), (11)

and from Theorem 14, we have that569

∀n ∈ Log ∃G ∈ FORMULA[4n2] ∀x (|x| ≤ n→ F (x) = ⊕n(x)).

We can eliminate the constant 4 from the latter using that a > 2 and choosing a large enough n0, such that570

for every n ≥ n0, na ≥ 4n2 (provably in PV1). Consequently,571

∀n ≥ n0 ∈ Log ∃G ∈ FORMULA[na] ∀x (|x| ≤ n→ F (x) = ⊕n(x)). (12)

Finally, combining Equation (11) and Equation (12), we get that

∀n ≥ n0 ∈ Log ∃G ∈ FORMULA[na] ∀F ∈ FORMULA[n3/2] ∃x (|x| ≤ n ∧ F (x) ̸= G(x)),

which is exactly the formula size hierarchy, FSH[a, b, n0], for our choice of parameters a > 2 and b =572

3/2.573
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[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, boolean complexity, and derandomization.594

Annals of Pure and Applied Logic, 129(1-3):1–37, 2004. 3, 7595
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A Proof of the KPT Theorem for ∀∃∀∃ Sentences629

In order to make our results more accessible and the presentation self-contained, in this section we630

describe a standard model-theoretic proof of the KPT Witnessing Theorem. We restate the result below for631

convenience of the reader.632

Theorem 17. Let T be a universal theory with vocabulary L. Let φ be an open L-formula, and suppose
that

T ⊢ ∀x ∃y ∀z ∃w φ(x, y, z, w).

Then there is a finite sequence s1, . . . , sk of L-terms such that

T ⊢ ∀x, z1, . . . , zk
(
ψ(x, s1(x), z1) ∨ ψ(x, s2(x, z1), z2) ∨ · · · ∨ ψ(x, sk(z1, . . . , zk−1), zk)

)
,

where
ψ(x, y, z) ≜ ∃w φ(x, y, z, w).
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Proof. Let b, c1, c2, . . . be a list of new constants, and let u1, u2, . . . be an enumeration of all terms built633

from the functions and constants in L together with b, c1, c2, . . ., where the only new constants in uk are634

among b, c1, . . . , ck−1.635

For convenience, let ψ(x, y, z) ≜ ∃wφ(x, y, z, w), as in the statement of the theorem. We will argue
that there exists a constant k ≥ 1 such that no model of T satisfies the sentence

¬ψ(b, u1, c1) ∧ ¬ψ(b, u2, c2) ∧ . . . ∧ ¬ψ(b, uk, ck) .

This implies that every model of T satisfies the negation of this sentence, and by the completeness theorem,

T ⊢ ψ(b, u1, c1) ∨ ψ(b, u2, c2) ∨ . . . ∨ ψ(b, uk, ck) .

Since b, c1, c2, . . . are new constants and each term uk depends only on b, c1, . . . , ck−1 (among the new636

constant symbols), the result follows.637

To show the remaining claim, we argue by contradiction. Suppose that no finite k satisfies the claim.
Then, by compactness, we get that

T ∪ {¬ψ(b, u1, c1),¬ψ(b, u2, c2),¬ψ(b, u3, c3), . . .}

admits a model M. Consequently, using the definition of ψ,

M |= T ∪ {∀w¬φ(b, u1, c1, w), ∀w¬φ(b, u2, c2, w), . . .}

Let T+ ≜ T∪{∀w¬φ(b, u1, c1, w), ∀w¬φ(b, u2, c2, w), . . .}. Since T is a universal theory and φ is an open
formula, it follows that T+ is also a universal theory. For this reason, the substructure M′ of M consisting
of the denotations of the terms u1, u2, . . . is also a model of T+. Now it is not hard to prove that

M′ |= T + ∃x ∀y ∃z ∀w ¬φ(x, y, z, w) ,

which contradicts the hypothesis of the theorem and completes the proof. To see this, it is enough to show638

that M′ |= ∀y ∃z ∀w ¬φ(bM′
, y, z, w). Given an arbitrary element m in M′, by construction of M′, there639

is some term uk such that m = uM
′

k (bM
′
, cM

′
1 , . . . , cM

′
k−1). Since M′ is a model of T+, which includes640

the sentence ∀w¬φ(b, uk, ck, w), we get that M′ |= ∀w¬φ(bM′
,m, cM

′
k , w). This finishes the proof that641

M′ |= ∀y ∃z ∀w ¬φ(bM′
, y, z, w).642
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